Textiles and Microbes

Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

Microbes can be carried by and even multiply on textiles. The first real, premeditated, microbiological warfare happened in 1763, during the Anglo-French wars in North America, when Native American emissaries were given blankets or handkerchiefs contaminated with smallpox. Thus, a small epidemic started and spread rapidly, causing considerable damage to the rank and file of the Native Americans. Nowadays, it could be said that textiles could be vectors of infections in hospitals or communities. The making of antimicrobial textiles could prevent them from becoming a reservoir of microbes in the transmission of infections and in cases of voluntary contamination in a terrorist threat for example. However, methods have to show that textiles are really active and do not attack the cutaneous flora they are in contact with. In this chapter, the role of textiles in the transmission of infections is summarized and the main characteristics of antimicrobial textiles are described.

Keywords

Biological Agent Bacillus Anthracis Quaternary Ammonium Compound Vancomycin Resistant Enterococcus Body Odor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to offer their sincere thanks to Mrs Hélène Vicens, Mrs Agnes Pallaver, Mr Neil Pallaver and Professor Angeli Kodjo for critically reading the ­manuscript during its preparation.

References

  1. 1.
    Hansen W, Freney J (2001) La maladie du charbon. Editions Privat, ToulouseGoogle Scholar
  2. 2.
    Wattiau P, Klee SR, Fretin D, Van Hessche M, Menart M, Franz T, Chasseur C, Butaye P, Imberechts H (2008) Occurrence and genetic diversity of Bacillus anthracis strains isolated in an active wool-cleaning factory. Appl Environ Microbiol 74(13):4005–4011CrossRefGoogle Scholar
  3. 3.
    Fenn EA (2000) Biological warfare in eighteenth-century North America: beyond Jeffery Amherst. J Am Hist 86(4):1552–1580CrossRefGoogle Scholar
  4. 4.
    Selwyn S (1966) Sir John Pringle: hospital reformer, moral philosopher and pioneer of antiseptics. Med Hist 10(3):266–274Google Scholar
  5. 5.
    White L (2004) Poisoned food, poisoned uniforms, and anthrax: or, how guerillas die in war. Osiris 19:220–233CrossRefGoogle Scholar
  6. 6.
    Takahashi A, Yomoda S, Tanimoto K, Kanda T, Kobayashi I, Ike Y (1998) Streptococcus pyogenes hospital-acquired infection within a dermatological ward. J Hosp Infect 40(2):135–140CrossRefGoogle Scholar
  7. 7.
    Brunton WA (1995) Infection and hospital laundry. Lancet 345(8964):1574–1575CrossRefGoogle Scholar
  8. 8.
    Standaert SM, Hutcheson RH, Schaffner W (1994) Nosocomial transmission of Salmonella gastroenteritis to laundry workers in a nursing home. Infect Control Hosp Epidemiol 15(1):22–26CrossRefGoogle Scholar
  9. 9.
    Barrie D, Hoffman PN, Wilson JA, Kramer JM (1994) Contamination of hospital linen by Bacillus cereus. Epidemiol Infect 113(2):297–306CrossRefGoogle Scholar
  10. 10.
    Gonzaga AJ, Mortimer EA Jr, Wolinsky E, Rammelkamp CH Jr (1964) Transmission of staphylococci by fomites. JAMA 189:711–715CrossRefGoogle Scholar
  11. 11.
    Shiomori T, Miyamoto H, Makishima K, Yoshida M, Fujiyoshi T, Udaka T, Inaba T, Hiraki N (2002) Evaluation of bedmaking-related airborne and surface methicillin-resistant Staphylococcus aureus contamination. J Hosp Infect 50(1):30–35CrossRefGoogle Scholar
  12. 12.
    Perry C, Marshall R, Jones E (2001) Bacterial contamination of uniforms. J Hosp Infect 48(3):238–241CrossRefGoogle Scholar
  13. 13.
    Klakus J, Vaughan NL, Boswell TC (2008) Meticillin-resistant Staphylococcus aureus contamination of hospital curtains. J Hosp Infect 68(2):189–190CrossRefGoogle Scholar
  14. 14.
    Dancer S (2008) Importance of the environment in meticillin-resistant Staphylococcus aureus acquisition: the case for hospital cleaning. Lancet Infect Dis 8(2):101–113CrossRefGoogle Scholar
  15. 15.
    Biljan MM, Hart CA, Sunderland D, Manasse PR, Kingsland CR (1993) Multicentre randomised double bind crossover trial on contamination of conventional ties and bow ties in routine obstetric and gynaecological practice. BMJ 307(6919):1582–1584CrossRefGoogle Scholar
  16. 16.
    Coronel B, Boiron A, Renaud FN, Troncy J, Escarment J, Dusseau JY, Payet-Bonnefond C, Freney J (2001) Bacterial contamination of bed clothes in wards of different specialities and impact of the surgical site infection. In: 11th Réunion Interdiciplinaire de Chimiothérapie Anti-Infectieuse (RICAI), ParisGoogle Scholar
  17. 17.
    Weernink A, Severin WP, Tjernberg I, Dijkshoorn L (1995) Pillows, an unexpected source of Acinetobacter. J Hosp Infect 29(3):189–199CrossRefGoogle Scholar
  18. 18.
    Oie S, Hosokawa I, Kamiya A (2002) Contamination of room door handles by methicillin-sensitive/methicillin-resistant Staphylococcus aureus. J Hosp Infect 51(2):140–143CrossRefGoogle Scholar
  19. 19.
    Neely AN, Sittig DF (2002) Basic microbiologic and infection control information to reduce the potential transmission of pathogens to patients via computer hardware. J Am Med Inform Assoc 9(5):500–508CrossRefGoogle Scholar
  20. 20.
    Bebbington A, Parkin I, James PA, Chichester LJ, Kubiak EM (2003) Patients’ case-notes: look but don’t touch. J Hosp Infect 55(4):299–301CrossRefGoogle Scholar
  21. 21.
    Yong JM, Naqvi M, Richards L (2005) Microbial contamination of hospital bed handsets. Am J Infect Control 33:170–174CrossRefGoogle Scholar
  22. 22.
    Oie S, Kamiya A (1996) Survival of methicillin-resistant Staphylococcus aureus (MRSA) on naturally contaminated dry mops. J Hosp Infect 34(2):145–149CrossRefGoogle Scholar
  23. 23.
    Neely AN, Maley MP (2000) Survival of enterococci and staphylococci on hospital fabrics and plastic. J Clin Microbiol 38(2):724–726Google Scholar
  24. 24.
    Neely AN, Orloff MM (2001) Survival of some medically important fungi on hospital fabrics and plastics. J Clin Microbiol 39(9):3360–3361CrossRefGoogle Scholar
  25. 25.
    Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 6:130CrossRefGoogle Scholar
  26. 26.
    Anonymous (2005) Possession, use, and transfer of select agents and toxins. Final rule, Centers for Disease Control and Prevention, Office of Inspector General, Department of Health and Human Services (HHS). Fed Regist 70(52):13293–13325Google Scholar
  27. 27.
    Johnston SA (2007) The potential importance of presymptomatic, host-based diagnosis in biodefense and standard health care. In: Io M (ed) Global infectious disease surveillance and detection: assessing the challenges-finding solutions. Workshop summary. The National Academic Press, Washington, DC, pp 193–212Google Scholar
  28. 28.
    Zerwekh T, Waring S (2005) Epidemiology in bioterrorism (infectious disease epidemiology, outbreak investigation, epidemiological response). In: Pilch RF, Zilinskas RA (eds) Encylopedia of bioterrorism defense. Wiley-Liss, Hoboken, pp 199–202Google Scholar
  29. 29.
    Kaufmann AF, Meltzer MI, Schmid GP (1997) The economic impact of a bioterrorist attack: are prevention and postattack intervention programs justifiable? Emerg Infect Dis 3(2):83–94CrossRefGoogle Scholar
  30. 30.
    Lim DV, Simpson JM, Kearns EA, Kramer MF (2005) Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin Microbiol Rev 18(4):583–607CrossRefGoogle Scholar
  31. 31.
    Busher A, Noble-Wang J, Rose L (2008) Surface sampling. In: Emanuel P, Roos JW, Niyogi K (eds) Sampling for biological agents in the environment. ASM Press, Washington, DC, pp 95–131Google Scholar
  32. 32.
    Estill CF, Baron PA, Beard JK, Hein MJ, Larsen LD, Rose L, Schaefer FW 3rd, Noble-Wang J, Hodges L, Lindquist HD, Deye GJ, Arduino MJ (2009) Recovery efficiency and limit of detection of aerosolized Bacillus anthracis Sterne from environmental surface samples. Appl Environ Microbiol 75(13):4297–4306CrossRefGoogle Scholar
  33. 33.
    Beecher DJ (2006) Forensic application of microbiological culture analysis to identify mail intentionally contaminated with Bacillus anthracis spores. Appl Environ Microbiol 72(8):5304–5310CrossRefGoogle Scholar
  34. 34.
    Bradley BJ, Clarksen DV (2006) Portable contaminant sampling system. USA Patent US Patent No. 7100461Google Scholar
  35. 35.
    Bradley BJ (1999) Microbial sampler and concentrator. USA Patent US Patent No. 5868928Google Scholar
  36. 36.
    Emanuel P, Roos JW, Niyogi K (2008) Sampling for biological agents in the environment. ASM Press, Washington, DCGoogle Scholar
  37. 37.
    Frawley DA, Samaan MN, Bull RL, Robertson JM, Mateczun AJ, Turnbull PC (2008) Recovery efficiencies of anthrax spores and ricin from nonporous or nonabsorbent and porous or absorbent surfaces by a variety of sampling methods. J Forensic Sci 53(5):1102–1107CrossRefGoogle Scholar
  38. 38.
    Casagrande R, Kosal ME (2005) Detection of biological agents. In: Pilch RF, Zilinskas RA (eds) Encyclopedia of bioterrorism defense. Wiley-Liss, Hoboken, pp 167–175Google Scholar
  39. 39.
    Uttenthaler E, Schraml M, Mandel J, Drost S (2001) Ultrasensitive quartz crystal microbalance sensors for detection of M13-phages in liquids. Biosens Bioelectron 16(9–12):735–743CrossRefGoogle Scholar
  40. 40.
    Conroy PJ, Hearty S, Leonard P, O’Kennedy RJ (2009) Antibody production, design and use for biosensor-based applications. Semin Cell Dev Biol 20(1):10–26CrossRefGoogle Scholar
  41. 41.
    Regan JF, Makarewicz AJ, Hindson BJ, Metz TR, Gutierrez DM, Corzett TH, Hadley DR, Mahnke RC, Henderer BD, Breneman JWt, Weisgraber TH, Dzenitis JM (2008) Environmental monitoring for biological threat agents using the Autonomous Pathogen Detection System with multiplexed polymerase chain reaction. Anal Chem 80(19):7422–7429CrossRefGoogle Scholar
  42. 42.
    Schaldach C, Bench G, DeYoreo JJ, Esposito T, Fergenson DP, Ferreira J, Gard E, Grant P, Hollars C, Horn J, Huser T, Kashgarian M, Knezovich J, Lane SM, Malkin AJ, Pitesky M, Talley C, Tobias HJ, Woods B, Wu KJ, Velsko SP (2005) Non-DNA methods for biological signatures. In: Breeze RG, Budowle B, Schutzer SE (eds) Microbial forensics. Elsevier, Burlington, pp 251–294CrossRefGoogle Scholar
  43. 43.
    Lebedev AT (2005) Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents. Toxicol Appl Pharmacol 207(2 Suppl):451–458CrossRefGoogle Scholar
  44. 44.
    Beverly MB, Voorhees KJ, Hadfield TL, Cody RB (2000) Electron monochromator mass spectrometry for the analysis of whole bacteria and bacterial spores. Anal Chem 72(11):2428–2432CrossRefGoogle Scholar
  45. 45.
    Vaidyanathan S, Rowland JJ, Kell DB, Goodacre R (2001) Discrimination of aerobic endospore-forming bacteria via electrospray-lonization mass spectrometry of whole cell suspensions. Anal Chem 73(17):4134–4144CrossRefGoogle Scholar
  46. 46.
    Wilkes JG, Rafii F, Sutherland JB, Rushing LG, Buzatu DA (2006) Pyrolysis mass spectrometry for distinguishing potential hoax materials from bioterror agents. Rapid Commun Mass Spectrom 20(16):2383–2386CrossRefGoogle Scholar
  47. 47.
    Yang M, Kim TY, Hwang HC, Yi SK, Kim DH (2008) Development of a palm portable mass spectrometer. J Am Soc Mass Spectrom 19(10):1442–1448CrossRefGoogle Scholar
  48. 48.
    Fenselau C, Demirev PA (2001) Characterization of intact microorganisms by Maldi mass spectrometry. Mass Spectrom Rev 20(4):157–171CrossRefGoogle Scholar
  49. 49.
    Lay JO Jr (2001) Maldi-tof mass spectrometry of bacteria. Mass Spectrom Rev 20(4):172–194ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    Valentine NB, Wahl JH, Kingsley MT, Wahl KL (2002) Direct surface analysis of fungal species by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 16(14):1352–1357CrossRefGoogle Scholar
  51. 51.
    Voisin S, Terreux R, Renaud FN, Freney J, Domard M, Deruaz D (2004) Pyrolysis patterns of 5 close Corynebacterium species analyzed by artificial neural networks. Antonie Van Leeuwenhoek 85(4):287–296CrossRefGoogle Scholar
  52. 52.
    Williams TL, Andrzejewski D, Lay JO, Musser SM (2003) Experimental factors affecting the quality and reproducibility of Maldi TOF mass spectra obtained from whole bacteria cells. J Am Soc Mass Spectrom 14(4):342–351CrossRefGoogle Scholar
  53. 53.
    Fergenson DP, Pitesky ME, Tobias HJ, Steele PT, Czerwieniec GA, Russell SC, Lebrilla CB, Horn JM, Coffee KR, Srivastava A, Pillai SP, Shih MT, Hall HL, Ramponi AJ, Chang JT, Langlois RG, Estacio PL, Hadley RT, Frank M, Gard EE (2004) Reagentless detection and classification of individual bioaerosol particles in seconds. Anal Chem 76(2):373–378CrossRefGoogle Scholar
  54. 54.
    Lee H, Williams SK, Wahl KL, Valentine NB (2003) Analysis of whole bacterial cells by flow field-flow fractionation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 75(11):2746–2752CrossRefGoogle Scholar
  55. 55.
    Reschiglian P, Zattoni A, Cinque L, Roda B, Dal Piaz F, Roda A, Moon MH, Min BR (2004) Hollow-fiber flow field-flow fractionation for whole bacteria analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 76(7):2103–2111CrossRefGoogle Scholar
  56. 56.
    Demirev PA, Fenselau C (2008) Mass spectrometry in biodefense. J Mass Spectrom 43(11):1441–1457CrossRefGoogle Scholar
  57. 57.
    Driskell JD, Uhlenkamp JM, Lipert RJ, Porter MD (2007) Surface-enhanced Raman scattering immunoassays using a rotated capture substrate. Anal Chem 79(11):4141–4148CrossRefGoogle Scholar
  58. 58.
    Pestov D, Wang X, Ariunbold GO, Murawski RK, Sautenkov VA, Dogariu A, Sokolov AV, Scully MO (2008) Single-shot detection of bacterial endospores via coherent Raman spectroscopy. Proc Natl Acad Sci U S A 105(2):422–427ADSCrossRefGoogle Scholar
  59. 59.
    Golightly RS, Doering WE, Natan MJ (2009) Surface-enhanced Raman spectroscopy and homeland security: a perfect match? ACS Nano 3(10):2859–2869CrossRefGoogle Scholar
  60. 60.
    Hindson BJ, Makarewicz AJ, Setlur US, Henderer BD, McBride MT, Dzenitis JM (2005) APDS: the autonomous pathogen detection system. Biosens Bioelectron 20(10):1925–1931CrossRefGoogle Scholar
  61. 61.
    Hindson BJ, McBride MT, Makarewicz AJ, Henderer BD, Setlur US, Smith SM, Gutierrez DM, Metz TR, Nasarabadi SL, Venkateswaran KS, Farrow SW, Colston BW Jr, Dzenitis JM (2005) Autonomous detection of aerosolized biological agents by multiplexed immunoassay with polymerase chain reaction confirmation. Anal Chem 77(1):284–289CrossRefGoogle Scholar
  62. 62.
    Hang J, Sundaram AK, Zhu P, Shelton DR, Karns JS, Martin PA, Li S, Amstutz P, Tang CM (2008) Development of a rapid and sensitive immunoassay for detection and subsequent recovery of Bacillus anthracis spores in environmental samples. J Microbiol Methods 73(3):242–246CrossRefGoogle Scholar
  63. 63.
    Stix G (2002) The universal biosensor. A drug company tries to make a detector that can find nearly any biopathogen. Sci Am 287(5):37–39CrossRefGoogle Scholar
  64. 64.
    Honisch C, Chen Y, Mortimer C, Arnold C, Schmidt O, van den Boom D, Cantor CR, Shah HN, Gharbia SE (2007) Automated comparative sequence analysis by base-specific cleavage and mass spectrometry for nucleic acid-based microbial typing. Proc Natl Acad Sci U S A 104(25):10649–10654ADSCrossRefGoogle Scholar
  65. 65.
    Briese T, Palacios G, Kokoris M, Jabado O, Liu Z, Renwick N, Kapoor V, Casas I, Pozo F, Limberger R, Perez-Brena P, Ju J, Lipkin WI (2005) Diagnostic system for rapid and sensitive differential detection of pathogens. Emerg Infect Dis 11(2):310–313Google Scholar
  66. 66.
    Palacios G, Briese T, Kapoor V, Jabado O, Liu Z, Venter M, Zhai J, Renwick N, Grolla A, Geisbert TW, Drosten C, Towner J, Ju J, Paweska J, Nichol ST, Swanepoel R, Feldmann H, Jahrling PB, Lipkin WI (2006) Masstag polymerase chain reaction for differential diagnosis of viral hemorrhagic fever. Emerg Infect Dis 12(4):692–695Google Scholar
  67. 67.
    Palacios G, Quan PL, Jabado OJ, Conlan S, Hirschberg DL, Liu Y, Zhai J, Renwick N, Hui J, Hegyi H, Grolla A, Strong JE, Towner JS, Geisbert TW, Jahrling PB, Buchen-Osmond C, Ellerbrok H, Sanchez-Seco MP, Lussier Y, Formenty P, Nichol MS, Feldmann H, Briese T, Lipkin WI (2007) Panmicrobial oligonucleotide array for diagnosis of infectious diseases. Emerg Infect Dis 13(1):73–81CrossRefGoogle Scholar
  68. 68.
    Uttamchandani M, Neo JL, Ong BN, Moochhala S (2009) Applications of microarrays in pathogen detection and biodefence. Trends Biotechnol 27(1):53–61CrossRefGoogle Scholar
  69. 69.
    Leski TA, Lin B, Malanoski AP, Wang Z, Long NC, Meador CE, Barrows B, Ibrahim S, Hardick JP, Aitichou M, Schnur JM, Tibbetts C, Stenger DA (2009) Testing and validation of high density resequencing microarray for broad range biothreat agents detection. PLoS One 4(8):e6569ADSCrossRefGoogle Scholar
  70. 70.
    Io M (2007) Global infectious disease surveillance and detection: assessing the challenges-finding solutions. Workshop summary. The National Academic Press, Washington, DCGoogle Scholar
  71. 71.
    Lipkin WI, Briese T (2007) Emerging tools for microbial diagnosis, surveillance, and discovery. In: Io M (ed) Global infectious disease surveillance and detection: assessing the challenges-finding solutions. Workshop summary. The National Academic Press, Washington, DC, pp 177–193Google Scholar
  72. 72.
    Homaira N, Rahman M, Hossain MJ, Epstein JH, Sultana R, Khan MS, Podder G, Nahar K, Ahmed B, Gurley ES, Daszak P, Lipkin WI, Rollin PE, Comer JA, Ksiazek TG, Luby SP (2010) Nipah virus outbreak with person-to-person transmission in a district of bangladesh, 2007. Epidemiol Infect 138(11):1630–1636CrossRefGoogle Scholar
  73. 73.
    Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Text Res J 78(1):60–72CrossRefGoogle Scholar
  74. 74.
    Chiller K, Selkin BA, Murakawa GJ (2001) Skin microflora and bacterial infections of the skin. J Invest Dermatol Symp Proc 6(3):170–174CrossRefGoogle Scholar
  75. 75.
    Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881–890CrossRefGoogle Scholar
  76. 76.
    Noble WC, Habbema JD, van Furth R, Smith I, de Raay C (1976) Quantitative studies on the dispersal of skin bacteria into the air. J Med Microbiol 9(1):53–61CrossRefGoogle Scholar
  77. 77.
    Noble WC (1981) Dispersal of microorganisms from skin. In: Noble WC (ed) Microbiology of the human skin, 2nd edn. Lloyd-Luke, London, pp 77–85Google Scholar
  78. 78.
    Wilson M (2004) Microbial inhabitants of humans. Cambridge University Press, New YorkCrossRefGoogle Scholar
  79. 79.
    Fleurette J (1995) Les flores microbiennes commensales de la peau et des muqueuses. In: Fleurette J, Freney J, Reverdy ME (eds) Antisepsie et désinfection. ESKA, Paris, pp 362–403Google Scholar
  80. 80.
    Leyden JJ, McGinley KJ, Mills OH, Kligman AM (1975) Age-related changes in the resident bacterial flora of the human face. J Invest Dermatol 65(4):379–381CrossRefGoogle Scholar
  81. 81.
    Leyden JJ, McGinley KJ (1982) Effect of 13-cis-retinoic acid on sebum production and Propionibacterium acnes in severe nodulocystic acne. Arch Dermatol Res 272(3–4):331–337CrossRefGoogle Scholar
  82. 82.
    Leyden JJ (2001) The evolving role of Propionibacterium acnes in acne. Semin Cutan Med Surg 20:139–143CrossRefGoogle Scholar
  83. 83.
    Gower DB, Holland KT, Mallet AI, Rennie PJ, Watkins WJ (1994) Comparison of 16-androstene steroid concentrations in sterile apocrine sweat and axillary secretions: interconversions of 16-androstenes by the axillary microflora–a mechanism for axillary odour production in man? J Steroid Biochem Mol Biol 48(4):409–418CrossRefGoogle Scholar
  84. 84.
    James WD, Roth RR (1992) Skin microbiology. In: Lederberg J (ed) Encyclopedia of microbiology, vol 4. Academic, San Diego, pp 23–32Google Scholar
  85. 85.
    Leyden JJ, McGinley KJ (1992) Coryneform bacteria. In: Noble WC (ed) The skin microflora and microbial skin disease. Cambridge University Press, Cambridge, pp 102–117Google Scholar
  86. 86.
    Kampf G, Kramer A (2004) Epidemiologic background of hand hygiene and evaluation of the most important agents for scrubs and rubs. Clin Microbiol Rev 17(4):863–893, table of contentsCrossRefGoogle Scholar
  87. 87.
    Brouwer DH, Kroese R, Van Hemmen JJ (1999) Transfer of contaminants from surface to hands: experimental assessment of linearity of the exposure process, adherence to the skin, and area exposed during fixed pressure and repeated contact with surfaces contaminated with a powder. Appl Occup Environ Hyg 14(4):231–239CrossRefGoogle Scholar
  88. 88.
    Jacques L, Mathieu D, Baumann F, Roussel A (1983) Bacteriological study of hands and the use of soap in the hospital environment. Biomed Pharmacother 37(9–10):415–418Google Scholar
  89. 89.
    Patrick DR, Findon G, Miller TE (1997) Residual moisture determines the level of touch-contact-associated bacterial transfer following hand washing. Epidemiol Infect 119(3):319–325CrossRefGoogle Scholar
  90. 90.
    Huo A, Xu B, Chowdhury MA, Islam MS, Montilla R, Colwell RR (1996) A simple filtration method to remove plankton-associated Vibrio cholerae in raw water supplies in developing countries. Appl Environ Microbiol 62(7):2508–2512Google Scholar
  91. 91.
    Salton MR (1968) Lytic agents, cell permeability, and monolayer penetrability. J Gen Physiol 52(1):227–252CrossRefGoogle Scholar
  92. 92.
    Russell AD, Chopra I (1996) Understanding antibacterial action and resistance, 2nd edn. Ellis Horwood, LondonGoogle Scholar
  93. 93.
    McDonnell G (2008) Biocides: mode of action and mechanisms of resistance. In: Manivanan G (ed) Disinfection and decontamination. CRC Press, Boca-Raton, pp 87–124Google Scholar
  94. 94.
    Poole K (2002) Mechanisms of bacterial biocide and antibiotic resistance. J Appl Microbiol 92(Suppl):55S–64SCrossRefGoogle Scholar
  95. 95.
    Littlejohn TG, DiBerardino D, Messerotti LJ, Spiers SJ, Skurray RA (1991) Structure and evolution of a family of genes encoding antiseptic and disinfectant resistance in Staphylococcus aureus. Gene 101(1):59–66CrossRefGoogle Scholar
  96. 96.
    Sasatsu M, Shirai Y, Hase M, Noguchi N, Kono M, Behr H, Freney J, Arai T (1995) The origin of the antiseptic-resistance gene ebr in Staphylococcus aureus. Microbios 84(340):161–169Google Scholar
  97. 97.
    Behr H, Reverdy ME, Mabilat C, Freney J, Fleurette J (1994) Relationship between the level of minimal inhibitory concentrations of five antiseptics and the presence of qacA gene in Staphylococcus aureus. Pathol Biol (Paris) 42(5):438–444Google Scholar
  98. 98.
    Wireman J, Liebert CA, Smith T, Summers AO (1997) Association of mercury resistance with antibiotic resistance in the Gram-negative fecal bacteria of primates. Appl Environ Microbiol 63(11):4494–4503Google Scholar
  99. 99.
    Sokolov BV (1967) Antifungal and antibacterial effect of some new synthetic tissues. Vestn Dermatol Venerol 41(2):38–40Google Scholar
  100. 100.
    Renaud FNR, Doré J, Freney J, Coronel B, Dusseau JY (2006) Evaluation of antibacterial properties of a textile product with antimicrobial finish in a hospital environment. J Ind Text 36(1):89–94CrossRefGoogle Scholar
  101. 101.
    Renaud FN, Boiron A, Freney J (2001) Les textiles antimicrobiens: précautions indispensables avant leur utilisation. Hygiène S 9:25–30Google Scholar
  102. 102.
    Balazy A, Toivola M, Adhikari A, Sivasubramani SK, Reponen T, Grinshpun SA (2006) Do n95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks? Am J Infect Control 34(2):51–57CrossRefGoogle Scholar
  103. 103.
    Garside P (2010) Textiles. In: Mitchell R, McNamara CJ (eds) Cultural heritage microbiology. ASM Press, Washington, DC, pp 97–110Google Scholar
  104. 104.
    Tsuchiya Y, Ohta J, Ishida Y, Morisaki H (2008) Cloth colorization caused by microbial biofilm. Colloid Surf B Biointerfaces 64:216–222CrossRefGoogle Scholar
  105. 105.
    Borkow G, Gabbay J (2008) Biocidal textiles can help fight nosocomial infections. Med Hypotheses 70(5):990–994CrossRefGoogle Scholar
  106. 106.
    Mungkalasiri J, Bedel L, Emieux F, Doré J, Renaud FN, Sarantopoulos C, Maury F (2010) CVD elaboration of nanostructured Tio2-ag thin films with efficient antibacterial properties. Chem Vap Depos 16:35–41CrossRefGoogle Scholar
  107. 107.
    Mungkalasiri J, Bedel L, Emieux F, Dore J, Renaud FN, Sarantopoulos C, Maury F (2009) DLI-CVD of Tio2-cu antibacterial thin films: growth and characterization. Surf Coat Technol 204:887–892CrossRefGoogle Scholar
  108. 108.
    Schweizer HP (2001) Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiol Lett 202(1):1–7CrossRefGoogle Scholar
  109. 109.
    Levy SB (2001) Antibacterial household products: cause for concern. Emerg Infect Dis 7(3 Suppl):512–515Google Scholar
  110. 110.
    Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL (2008) Urinary concentrations of triclosan in the U.S. Population: 2003–2004. Environ Health Perspect 116(3):303–307CrossRefGoogle Scholar
  111. 111.
    Rodricks JV, Swenberg JA, Borzelleca JF, Maronpot RR, Shipp AM (2010) Triclosan: a critical review of the experimental data and development of margins of safety for consumer products. Crit Rev Toxicol 40(5):422–484CrossRefGoogle Scholar
  112. 112.
    Chen-Yu JH, Eberhardt DM, Kincade DH (2007) Antibacterial and laudering properties of ASM and PHMB as finishing agents on fabric for health care workers’ uniforms. Cloth Text Res J 25:258–272CrossRefGoogle Scholar
  113. 113.
    Fernandes J, Tavaria F, Fonseca SC, Ramos OS, Pintado ME, Malcata F (2010) In vitro screening for anti-microbial activity of chitosans and chitooligosaccharides, aiming at potential uses in functional textiles. J Microbiol Biotechnol 20(2):311–318CrossRefGoogle Scholar
  114. 114.
    Ip M, Lui SL, Poon VK, Lung I, Burd A (2006) Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol 55(Pt 1):59–63CrossRefGoogle Scholar
  115. 115.
    Sawhney APS, Condon B, Singh KV, Pang SS, Li G, Hui D (2008) Modern applications of nanotechnology in textiles. Text Res J 78:731–739CrossRefGoogle Scholar
  116. 116.
    Li Y, Leung P, Yao L, Song QW, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62(1):58–63CrossRefGoogle Scholar
  117. 117.
    Gabbay J, Borkow G, Mishal J, Magen E, Zatcoff R, Shemer-Avni Y (2006) Copper oxide impregnated textiles with potent biocidal activities. J Ind Text 35:323–335CrossRefGoogle Scholar
  118. 118.
    Kangwansupamonkon W, Lauruengtana V, Surassmo S, Ruktanonchai U (2009) Antibacterial effect of apatite-coated titanium dioxide for textiles applications. Nanomedicine 5(2):240–249CrossRefGoogle Scholar
  119. 119.
    Anonyme (1998) Biocide directive 98/8/European Community, 16 February 1998Google Scholar
  120. 120.
    Renaud FN, Freney J (1999) Les textiles antimicrobiens. Pour la Sci 226:134–140Google Scholar
  121. 121.
    Nelson G (2002) Application of microencapsulation in textiles. Int J Pharm 242(1–2):55–62CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.UMR-CNRS-5557 Ecologie microbienne, Bactéries pathogènes opportunistes et environnementUniversité de LyonLyonFrance
  2. 2.UMR-CNRS-5510 Mateis/I2B, Interactions Biologiques et BiomatériauxUniversité de LyonVilleurbanne cedexFrance

Personalised recommendations