Generic Non-technical Procedures in Design Problem Solving: Is There Any Benefit to the Clarification of Task Requirements?

  • Constance Winkelmann
  • Winfried Hacker
Conference paper

Abstract

The quasi-experimental field study with 174 advanced engineering students analysed the possibilities to assist the requirements analysis when solving design problems. Technical check lists are in common practice for assisting the requirement analysis. We wondered if a generic question answering system (GQAS) aiming at the ‘semantic relationships’ would offer an additional benefit to the exhaustive identification of the requirements of a design task when a technical check list were offered at the same time. Therefore, two groups of students of mechanical engineering were asked to develop a list of requirements for the design of a machine collecting windfall. Whereas one group was offered a technical check list together with the generic question answering system, the other group was only offered the technical check list. The entire number of identified applicable requirements is significantly higher for the group with the additional GQAS. The additional benefit of answering generic interrogative questions holds for the majority of the individual categories of technical requirements, e.g. the weight of the device to be designed, manufacturing costs or recycling. The benefit is explained hypothetically with the proven stimulation of meta-cognitive processes by means of systems of interrogative questions. Practically, the consideration of generic procedures of problem solving in engineering design education may be proposed.

Keywords

Design Problem Technical Requirement Goal Attainment Requirement Analysis Task Requirement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wallace, K., Ahmed, S.: How Engineering Designers Obtain Information. In: Lindemann, U. (ed.) Human Behaviour in Design. Individuals, Teams, Tools, pp. 184–194. Springer, Berlin (2003)Google Scholar
  2. 2.
    Müller, A.: Iterative Zielklärung und Handlungsplanung als Faktoren erfolgreichen Gruppenhandelns bei der Lösung komplexer Probleme: Eine handlungstheoretische Betrachtung des Konstruierens in Gruppen. Mensch & Buch Verlag, Berlin (2007)Google Scholar
  3. 3.
    Görner, R.: Zur psychologischen Analyse von Konstrukteur- und Entwurfstätigkeiten. In: Bergmann B., Richter P. (Hrsg.) Die Handlungsregulationstheorie. Von der Praxis einer Theorie. Hogrefe, Göttingen, pp. 233–241 (1994)Google Scholar
  4. 4.
    Lindemann, U.: Methodische Entwicklung technischer Produkte: Methoden flexibel und situationsgerecht anwenden, 3. korrigierte Aufl. Springer, Heidelberg (2007)Google Scholar
  5. 5.
    Pahl, G., Beitz, W., Feldhusen, J., Grote, K.: Konstruktionslehre. Methoden und Anwendung, 4. neubearb. Aufl. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Wetzstein, A., Hacker, W.: Reflective Verbalization Improves Solutions – The Effects of Question-based Reflection in Design Problem Solving. Applied Cognitive Psychology 18, 145–156 (2004)CrossRefGoogle Scholar
  7. 7.
    West, M.A.: Managment of Creativity and Innovation in Organizations. In: Smelser, N.J., Baltes, P.B. (eds.) International Encyclopedia of the Social & Behavioral Sciences, vol. 5, pp. 2895–2900. Elsevier, Amsterdam (2001)Google Scholar
  8. 8.
    Winkelmann, C., Hacker, W.: Erklärungsansätze für die Wirkung einer Frage-Antwort-Technik zur Unterstützung beim Design Problem Solving. Zeitschrift für Psychologie 214(2), 73–86 (2006)CrossRefGoogle Scholar
  9. 9.
    Winkelmann, C., Hacker, W.: Unterstützungsmöglichkeiten der Produktentwicklung: Welche Veränderungen am Ergebnis löst das fragengestützte Nachdenken über eigene Lösungen aus? Zeitschrift für Arbeitswissenschaft 61, 11–21 (2007)Google Scholar
  10. 10.
    Daudelin, M.: Learning from experience through reflection. Organizational Dynamics 24, 36–48 (1996)CrossRefGoogle Scholar
  11. 11.
    Krause, W.: Denken und Gedächtnis aus naturwissenschaftlicher Sicht. Hogrefe, Göttingen (2000)Google Scholar
  12. 12.
    Crawley, E.F., Malmqvist, J., Östlund, S., Brodeur, D.R.: Rethinking Engineering Education. The CDIO Approach. Springer Science + Business, Heidelberg (2007)Google Scholar
  13. 13.
    Flechter, G., Flin, R., McGeorge, P., et al.: Rating non-technical skills: Developing a behavioral marker system for use in aneasthesia cognition. Technology and Work 6, 165–171 (2004)Google Scholar
  14. 14.
    Yule, S., Paterson-Brown, S., Maran, N.: Non-technical skills for surgeons in the operating room: A review of the literature. Surgery 139(2), 140–149 (2006)CrossRefGoogle Scholar
  15. 15.
    Heisig, B.: Planen und Selbstregulation: Struktur und Eigenständigkeit der Konstrukte sowie interindividuelle Differenzen. Peter Lang, Frankfurt am Main (1995)Google Scholar
  16. 16.
    Winkelmann, C., Hacker, W.: Question-answering-technique to support freshman and senior engineers in processes of engineering design. International Journal of Technology and Design Education (2009), springerlink.com/content/g70n16075001x4u8/?p=1ace059a5f514205b6f9bcdca2e5c4f9&pi=2 (Last accessed May 2010)

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  • Constance Winkelmann
    • 1
  • Winfried Hacker
    • 1
  1. 1.Technische Universität DresdenGermany

Personalised recommendations