Skip to main content

Metals Induced Disruption of Ubiquitin Proteasome System, Activation of Stress Signaling and Apoptosis

  • Chapter
  • First Online:
Cellular Effects of Heavy Metals

Abstract

The ubiquitin proteasomal system (UPS) is a highly conserved cellular pathway that plays an important role in the selective degradation of cellular proteins, helping to regulate a variety of vital cellular functions. Disruption of this system, therefore, can have significant downstream effects on critical cellular functions, impacting susceptibility and development of disease. Our research focuses on the identification and characterization of cellular responses to environmental metal exposure and the relationship to the development of neurodegenerative diseases . Our studies have shown that metals can also disrupt the UPS system and that some of these responses are mediated through key cell stress pathways in a similar fashion to what is seen with model UPS inhibitors . Although the accumulation of high molecular weight polyubiquitinated protein conjugates (HMW-polyUb) induced by metals was similar to what was seen with UPS inhibitor MG132, metals were less effective at inhibiting proteasomal activity, suggesting that the metals disrupt the UPS through an alternate mechanism. Our integrative analysis of genome-wide gene expression and pathway mapping in the mouse embryonic fibroblast cells (MEFs) exposed to cadmium (Cd), methyl mercury (MeHg), and arsenic (AS) demonstrated an induction of oxidative stress , disruption of UPS and cell cycle regulation . Cd and MeHg treatment in MEFs cells induced significant alteration of UPS pathway genes. Our findings strongly support the hypothesis that metal-induced disruption of UPS function results in changes in critical cellular mechanisms such as cell cycle regulation and apoptosis . This disruption has a significant implication for the potential development and susceptibility of neurodegenerative disease .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ancolio K, Alves da Costa C, Ueda K, Checler F (2000) Alpha-synuclein and the Parkinson’s disease-related mutant Ala53Thr-alpha-synuclein do not undergo proteasomal degradation in HEK293 and neuronal cells. Neurosci Lett 285:79–82

    Article  PubMed  CAS  Google Scholar 

  • Barrachina M, Castano E, Dalfo E, Maes T, Buesa C, Ferrer I (2006) Reduced ubiquitin C-terminal hydrolase-1 expression levels in dementia with Lewy bodies. Neurobiol Dis 22:265–273

    Article  PubMed  CAS  Google Scholar 

  • Basha MR, Murali M, Siddiqi HK, Ghosal K, Siddiqi OK, Lashuel HA, Ge YW, Lahiri DK, Zawia NH (2005a) Lead (Pb) exposure and its effect on APP proteolysis and Abeta aggregation. Faseb J 19:2083–2084

    CAS  Google Scholar 

  • Basha MR, Wei W, Bakheet SA, Benitez N, Siddiqi HK, Ge YW, Lahiri DK, Zawia NH (2005b) The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. J Neurosci 25:823–829

    Article  CAS  Google Scholar 

  • Beyersmann D, Hechtenberg S (1997) Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol Appl Pharmacol 144:247–261

    Article  PubMed  CAS  Google Scholar 

  • Blagosklonny M, Sheng G, Omura S, El-Deiry W (1996) Proteasome-dependent regulation of p21WAF1/CIP1 expression. Biochem Biophys Res Commun 227:564–569

    Article  PubMed  CAS  Google Scholar 

  • Bobba A, Canu N, Atlante A, Petragallo V, Calissano P, Marra E (2002) Proteasome inhibitors prevent cytochrome c release during apoptosis but not in excitotoxic death of cerebellar granule neurons. FEBS Lett 515:8–12

    Article  PubMed  CAS  Google Scholar 

  • Burbacher TM, Rodier PM, Weiss B (1990) Methylmercury developmental neurotoxicity: a comparison of effects in humans and animals. Neurotoxicol Teratol 12:191–202

    Article  PubMed  CAS  Google Scholar 

  • Burke RE (2004) Recent advances in research on Parkinson disease: synuclein and parkin. Neurologist 10:75–81

    Article  PubMed  Google Scholar 

  • Canfield RL, Kreher DA, Cornwell C, Henderson CR Jr (2003) Low-level lead exposure, executive functioning, and learning in early childhood. Child Neuropsychol 9:35–53

    Article  PubMed  Google Scholar 

  • Canu N, Barbato C, Ciotti MT, Serafino A, Dus L, Calissano P (2000) Proteasome involvement and accumulation of ubiquitinated proteins in cerebellar granule neurons undergoing apoptosis. J Neurosci 20:589–599

    PubMed  CAS  Google Scholar 

  • Carpenter DO (2001) Effects of metals on the nervous system of humans and animals. Int J Occup Med Environ Health 14:209–218

    PubMed  CAS  Google Scholar 

  • Chang CC, Huang PC (1996) Semi-empirical simulation of Zn/Cd binding site preference in the metal binding domains of mammalian metallothionein. Protein Eng 9:1165–1172

    Article  PubMed  CAS  Google Scholar 

  • Checkoway H, Nelson LM (1999) Epidemiologic approaches to the study of Parkinson’s disease etiology. Epidemiology 10:327–336

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Chang D, Goh M, Klibanov S, Ljungman M (2000) Role of p53 in cell cycle regulation and apoptosis following exposure to proteasome inhibitors. Cell Growth Differ 11:239–246

    PubMed  CAS  Google Scholar 

  • Chen F, Zhang Z, Bower J, Lu Y, Leonard S, Ding M, Castranova V, Piwnica-Worms H, Shi X (2002) Arsenite-induced cdc25c degradation is through the KEN-box and ubiquitin-proteasome pathway. PNAS 99:1990–1995

    Article  PubMed  CAS  Google Scholar 

  • Choi J, Levey AI, Weintraub ST, Rees HD, Gearing M, Chin LS, Li L (2004) Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases. J Biol Chem 279:13256–13264

    Article  PubMed  CAS  Google Scholar 

  • Chung KK, Dawson VL, Dawson TM (2003) New insights into Parkinson’s disease. J Neurol 250(Suppl 3):III15–III24

    PubMed  Google Scholar 

  • Clarkson TW (1987) Metal toxicity in the central nervous system. Environ Health Perspect 75:59–64

    Article  PubMed  CAS  Google Scholar 

  • Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR (2002) GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet 31:19–20

    Article  PubMed  CAS  Google Scholar 

  • Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822

    Article  PubMed  CAS  Google Scholar 

  • Ding W, Templeton D (2000). Activation of parallel mitogen-activated protein kinase cascades and induction of c-fos by cadmium. Toxicol Appl Pharmacol 162:93–99

    Article  PubMed  CAS  Google Scholar 

  • Dong W, Simeonova PP, Gallucci R, Matheson J, Flood L, Wang S, Hubbs A, Luster MI (1998) Toxic metals stimulate inflammatory cytokines in hepatocytes through oxidative stress mechanisms. Toxicol Appl Pharmacol 151:359–366

    Article  PubMed  CAS  Google Scholar 

  • Doniger SW, Salomonis N, Dahlquist KD, Vranizan K, Lawlor SC, Conklin BR (2003) MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol 4:R7

    Google Scholar 

  • Doran JF, Jackson P, Kynoch PA, Thompson RJ (1983) Isolation of PGP 9.5, a new human neurone-specific protein detected by high-resolution two-dimensional electrophoresis. J Neurochem 40:1542–1547

    CAS  Google Scholar 

  • EPA Common Chemicals Found at Superfund Sites (2004). http://www.epa.gov/superfund/resources/chemicals.html. Accessed 16 Mar 2004

  • Facheris M, Strain KJ, Lesnick TG, de Andrade M, Bower JH, Ahlskog JE, Cunningham JM, Lincoln S, Farrer MJ, Rocca WA, Maraganore DM (2005) UCHL1 is associated with Parkinson’s disease: a case-unaffected sibling and case-unrelated control study. Neurosci Lett 381:131–134

    Article  PubMed  CAS  Google Scholar 

  • Faustman EM, Ponce RA, Ou YC, Mendoza MA, Lewandowski T, Kavanagh T (2002) Investigations of methylmercury-induced alterations in neurogenesis. Environ Health Perspect 110(Suppl 5):859–864

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo-Pereira M, Cohen G (1999) The ubiquitin/proteasome pathway: friend or foe in zinc-, cadmium-, and H2O2-induced neuronal oxidative stress. Mol Biol Rep 26:65–69

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo-Pereira M, Yakushin S, Cohen G (1997) Accumulation of ubiquitinated proteins in mouse neuronal cells induced by oxidative stress. Mol Biol Rep 24:35–38

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo-Pereira ME, Yakushin S, Cohen G (1998) Disruption of the intracellular sulfhydryl homeostasis by cadmium-induced oxidative stress leads to protein thiolation and ubiquitination in neuronal cells. J Biol Chem 273:12703–12709

    Article  PubMed  CAS  Google Scholar 

  • Furuchi T, Hwang GW, Naganuma A (2002) Overexpression of the ubiquitin-conjugating enzyme Cdc34 confers resistance to methylmercury in Saccharomyces cerevisiae. Mol Pharmacol 61:738–741

    Article  PubMed  CAS  Google Scholar 

  • Furukawa Y, Vigouroux S, Wong H, Guttman M, Rajput AH, Ang L, Briand M, Kish SJ, Briand Y (2002) Brain proteasomal function in sporadic Parkinson’s disease and related disorders. Ann Neurol 51:779–782

    Article  PubMed  Google Scholar 

  • Goering PL, Fisher BR, Kish CL (1993) Stress protein synthesis induced in rat liver by cadmium precedes hepatotoxicity. Toxicol Appl Pharmacol 122:139–148

    Article  PubMed  CAS  Google Scholar 

  • Goering PL, Kuester RK, Neale AR, Chapekar MS, Zaremba TG, Gordon EA, Hitchins VM (2000) Effects of particulate and soluble cadmium species on biochemical and functional parameters in cultured murine macrophages. In Vitro Mol Toxicol 13:125–136

    Article  CAS  Google Scholar 

  • Gorell JM, Rybicki BA, Cole Johnson C, Peterson EL (1999) Occupational metal exposures and the risk of Parkinson’s disease. Neuroepidemiology 18:303–308

    Article  PubMed  CAS  Google Scholar 

  • Gribble EJ, Mendoza A, Hong S, Sidhu J, Faustman EM (2003) Evaluation of cell cycle kinetics in p53 mouse embryonal fibroblasts: effects of methyl mercury. Toxicol Sci 72:67–67

    Google Scholar 

  • Gribble EJ, Hong SW, Faustman EM (2005) The magnitude of methylmercury-induced cytotoxicity and cell cycle arrest is p53-dependent. Birth Defects Res A Clin Mol Teratol 73:29–38

    Article  PubMed  CAS  Google Scholar 

  • Hara T, Kamura T, Nakayama K, Oshikawa K, Hatakeyama S (2001) Degradation of p27(Kip1) at the G(0)–G(1) transition mediated by a Skp2-independent ubiquitination pathway. J Biol Chem 276:48937–48943

    Article  PubMed  CAS  Google Scholar 

  • Hwang GW, Furuchi T, Naganuma A (2002) A ubiquitin-proteasome system is responsible for the protection of yeast and human cells against methylmercury. Faseb J 16:709–711

    Article  PubMed  CAS  Google Scholar 

  • Hwang GW, Sasaki D, Naganuma A (2005) Overexpression of Rad23 confers resistance to methylmercury in saccharomyces cerevisiae via inhibition of the degradation of ubiquitinated proteins. Mol Pharmacol 68:1074–1078

    Article  PubMed  CAS  Google Scholar 

  • IARC (2002) Cadmium and cadmium compounds. http://www-cie.iarc.fr/htdocs/monographs/vol58/mono58-2.html. Accessed 23 July 2002

  • Iryo Y, Matsuoka M, Wispriyono B, Sugiura T, Igisu H (2000) Involvement of the extracellular signal-regulated protein kinase (ERK) pathway in the induction of apoptosis by cadmium chloride in CCRF-CEM cells. Biochem Pharmacol 60:1875–1882

    Article  PubMed  CAS  Google Scholar 

  • Jungmann J, Reins H, Schobert C, Jentsch S (1993) Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature 361:369–371

    Article  PubMed  CAS  Google Scholar 

  • Jurczuk M, Brzoska MM, Moniuszko-Jakoniuk J, Galazyn-Sidorczuk M, Kulikowska-Karpinska E (2004) Antioxidant enzymes activity and lipid peroxidation in liver and kidney of rats exposed to cadmium and ethanol. Food Chem Toxicol 42:429–438

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Park KC, Chung SS, Bang O, Chung CH (2003) Deubiquitinating enzymes as cellular regulators. J Biochem (Tokyo) 134:9–18

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick D, Dale K, Catania J, Gandolfi A (2003) Low-level arsenite causis accumulation of ubiquitinated proteins in rabbit renal cortical slices and HERK293 cells. Toxicol Appl Pharmacol 186:101–109

    Article  PubMed  CAS  Google Scholar 

  • Kwon J, Mochida K, Wang YL, Sekiguchi S, Sankai T, Aoki S, Ogura A, Yoshikawa Y, Wada K (2005) Ubiquitin C-terminal hydrolase L-1 is essential for the early apoptotic wave of germinal cells and for sperm quality control during spermatogenesis. Biol Reprod 73:29–35

    Article  PubMed  CAS  Google Scholar 

  • Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH (1998a) The ubiquitin pathway in Parkinson’s disease. Nature 395:451–452

    Article  CAS  Google Scholar 

  • Leroy E, Boyer R, Polymeropoulos MH (1998b) Intron–exon structure of ubiquitin c-terminal hydrolase-L1. DNA Res 5:397–400

    Article  CAS  Google Scholar 

  • Levenson CW (2003) Iron and Parkinson’s disease: chelators to the rescue? Nutr Rev 61:311–313

    Article  PubMed  Google Scholar 

  • Lewandowski TA, Pierce CH, Pingree SD, Hong S, Faustman EM (2002) Methylmercury distribution in the pregnant rat and embryo during early midbrain organogenesis. Teratology 66:235–241

    Article  PubMed  CAS  Google Scholar 

  • Lewandowski TA, Ponce RA, Charleston JS, Hong S, Faustman EM (2003a) Changes in cell cycle parameters and cell number in the rat midbrain during organogenesis. Brain Res Dev Brain Res 141:117–128

    Article  CAS  Google Scholar 

  • Lewandowski TA, Ponce RA, Charleston JS, Hong S, Faustman EM (2003b) Effect of methylmercury on midbrain cell proliferation during organogenesis: potential cross-species differences and implications for risk assessment. Toxicol Sci 75:124–133

    Article  CAS  Google Scholar 

  • Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J, Gu W (2002a) Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416:648–653

    Article  CAS  Google Scholar 

  • Li M, Luo J, Brooks CL, Gu W (2002b) Acetylation of p53 inhibits its ubiquitination by Mdm2. J Biol Chem 277:50607–50611

    Article  CAS  Google Scholar 

  • Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr (2002) The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell 111:209–218

    Article  PubMed  CAS  Google Scholar 

  • Lopez Salon M, Morelli L, Castano EM, Soto EF, Pasquini JM (2000) Defective ubiquitination of cerebral proteins in Alzheimer’s disease. J Neurosci Res 62:302–310

    Article  CAS  Google Scholar 

  • Lukas C, Sorensen CS, Kramer E, Santoni-Rugiu E, Lindeneg C, Peters JM, Bartek J, Lukas J (1999) Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex. Nature 401:815–818

    Article  PubMed  CAS  Google Scholar 

  • Maki CG, Huibregtse JM, Howley PM (1996) In vivo ubiquitination and proteasome-mediatede degradation of p53. Cancer Res 56:2649–2654

    PubMed  CAS  Google Scholar 

  • Maraganore DM, Lesnick TG, Elbaz A, Chartier-Harlin MC, Gasser T, Kruger R, Hattori N, Mellick GD, Quattrone A, Satoh J, Toda T, Wang J, Ioannidis JP, de Andrade M, Rocca WA (2004) UCHL1 is a Parkinson’s disease susceptibility gene. Ann Neurol 55:512–521

    Article  PubMed  CAS  Google Scholar 

  • Marx FP, Holzmann C, Strauss KM, Li L, Eberhardt O, Gerhardt E, Cookson MR, Hernandez D, Farrer MJ, Kachergus J, Engelender S, Ross CA, Berger K, Schols L, Schulz JB, Riess O, Kruger R (2003) Identification and functional characterization of a novel R621C mutation in the synphilin-1 gene in Parkinson’s disease. Hum Mol Genet 12:1223–1231

    Article  PubMed  CAS  Google Scholar 

  • McKeown-Eyssen GE, Ruedy J (1983) Prevalence of neurological abnormality in Cree Indians exposed to methylmercury in northern Quebec. Clin Invest Med 6:161–169

    PubMed  CAS  Google Scholar 

  • McKeown-Eyssen GE, Ruedy J, Hogg S, Guernsey JR, Woods I (1990) Validity and reproducibility of a screening examination for neurological abnormality in persons exposed to methylmercury. J Clin Epidemiol 43:489–498

    Article  PubMed  CAS  Google Scholar 

  • McNaught KS, Belizaire R, Jenner P, Olanow CW, Isacson O (2002) Selective loss of 20S proteasome alpha-subunits in the substantia nigra pars compacta in Parkinson’s disease. Neurosci Lett 326:155–158

    Article  PubMed  CAS  Google Scholar 

  • Meller R, Cameron JA, Torrey DJ, Clayton CE, Ordonez AN, Henshall DC, Minami M, Schindler CK, Saugstad JA, Simon RP (2006) Rapid degradation of Bim by the ubiquitin-proteasome pathway mediates short-term ischemic tolerance in cultured neurons. J Biol Chem 281:7429–7436

    Article  PubMed  CAS  Google Scholar 

  • Mendoza MAC, Ponce RA, Ou YC, Faustman EM (2002) p21(WAF1/CIP1) inhibits cell cycle progression but not G2/M-phase transition following methylmercury exposure. Toxicol Appl Pharmacol 178:117–125

    Article  PubMed  CAS  Google Scholar 

  • Michael D, Oren M (2003) The p53-MDM2 module and the ubiquitin system. Semin Cancer Biol 13:49–58

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Koide N, Himeno S, Nakagawa I, Imura N (1999) The involvement of microtubular disruption in methylmercury-induced apoptosis in neuronal and nonneuronal cell lines. Toxicol Appl Pharmacol 160:279–288

    Article  PubMed  CAS  Google Scholar 

  • Mochida K, Ohkubo N, Matsubara T, Ito K, Kakuno A, Fujii K (2004) Effects of endocrine-disrupting chemicals on expression of ubiquitin C-terminal hydrolase mRNA in testis and brain of the Japanese common goby. Aquat Toxicol 70:123–136

    Article  PubMed  CAS  Google Scholar 

  • Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134

    Article  PubMed  CAS  Google Scholar 

  • Mottet NK, Shaw CM, Burbacher TM (1985) Health risks from increases in methylmercury exposure. Environ Health Perspect 63:133–140

    Article  PubMed  CAS  Google Scholar 

  • Murray A (1995) Cyclin ubiquitination: the destructive end of mitosis. Cell 81:149–152

    Article  PubMed  CAS  Google Scholar 

  • Naganuma A, Furuchi T, Miura N, Hwang GW, Kuge S (2002) Investigation of intracellular factors involved in methylmercury toxicity. Tohoku J Exp Med 196:65–70

    Article  PubMed  CAS  Google Scholar 

  • NCBI (2004) Uchl1 SNP. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=Display&DB=snp

  • Needleman HL, Schell A, Bellinger D, Leviton A, Allred EN (1990) The long-term effects of exposure to low doses of lead in childhood. An 11-year follow-up report. N Engl J Med 322:83–88

    Article  PubMed  CAS  Google Scholar 

  • Okuda B, Iwamoto Y, Tachibana H, Sugita M (1997) Parkinsonism after acute cadmium poisoning. Clin Neurol Neurosurg 99:263–265

    Article  PubMed  CAS  Google Scholar 

  • Orlowski R (1999) The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death Differ 6:303–313

    Article  PubMed  CAS  Google Scholar 

  • Ou YC, Thompson SA, Kirchner SC, Kavanagh TJ, Faustman EM (1997) Induction of growth arrest and DNA damage-inducible genes Gadd45 and Gadd153 in primary rodent embryonic cells following exposure to methylmercury. Toxicol Appl Pharmacol 147:31–38

    Article  PubMed  CAS  Google Scholar 

  • Ou YC, Thompson SA, Ponce RA, Schroeder J, Kavanagh TJ, Faustman EM (1999a) Induction of the cell cycle regulatory gene p21 (Waf1, Cip1) following methylmercury exposure in vitro and in vivo. Toxicol Appl Pharmacol 157:203–212

    Article  CAS  Google Scholar 

  • Ou YC, White CC, Krejsa CM, Ponce RA, Kavanagh TJ, Faustman EM (1999b) The role of intracellular glutathione in methylmercury-induced toxicity in embryonic neuronal cells. Neurotoxicology 20:793–804

    CAS  Google Scholar 

  • Ozkaynak E, Finley D, Varshavsky A (1984) The yeast ubiquitin gene: head-to-tail repeats encoding a polyubiquitin precursor protein. Nature 312:663–666

    Article  PubMed  CAS  Google Scholar 

  • Pasquini L, Moreno MB, Adamo AM, Pasquini JM, Soto EF (2000) Lactacysin, a specific inhibitor of the proteasome, induces apoptosis and activates caspase-3 in cultured cerebellar granule cell. J Neurosci Res 59:601–611

    Article  PubMed  CAS  Google Scholar 

  • Pines J (1994) Cell cycle. Ubiquitin with everything. Nature 371:742–743

    CAS  Google Scholar 

  • Ponce RA, Kavanagh TJ, Mottet NK, Whittaker SG, Faustman EM (1994) Effects of methyl mercury on the cell cycle of primary rat CNS cells in vitro. Toxicol Appl Pharmacol 127:83–90

    Article  PubMed  CAS  Google Scholar 

  • Ponce RA, Wong EY, Faustman EM (2001) Quality adjusted life years (QALYs) and dose–response models in environmental health policy analysis—methodological considerations. Sci Total Environ 274:79–91

    Article  PubMed  CAS  Google Scholar 

  • Powers KM, Smith-Weller T, Franklin GM, Longstreth WT Jr, Swanson PD, Checkoway H (2003) Parkinson’s disease risks associated with dietary iron, manganese, and other nutrient intakes. Neurology 60:1761–1766

    Article  PubMed  CAS  Google Scholar 

  • Qu H, Syversen T, Aschner M, Sonnewald U (2003) Effect of methylmercury on glutamate metabolism in cerebellar astrocytes in culture. Neurochem Int 43:411–416

    Article  PubMed  CAS  Google Scholar 

  • Qui JH, Asai A, Chi S, Saito N, Hamada H, Kirino T (2000) Proteasome inhibitors induce cytochrome c-caspase-3-like protease-mediated apoptosis in cultured corical neurons. J Neurosci 20:259–265

    Google Scholar 

  • Rideout H, Wang Q, Park D, Stefanis L (2003) Cyclin-dependent kinsase activity is required for apoptotic death but not inclusion formation in cortical neurons after proteasomal inhibition. J Neurosci 23:1237–1245

    PubMed  CAS  Google Scholar 

  • Rodgers KJ, Dean RT (2003) Assessment of proteasome activity in cell lysates and tissue homogenates using peptide substrates. Int J Biochem Cell Biol 35:716–727

    Article  PubMed  CAS  Google Scholar 

  • Schulman BA, Carrano AC, Jeffrey PD, Bowen Z, Kinnucan ER, Finnin MS, Elledge SJ, Harper JW, Pagano M, Pavletich NP (2000) Insights into SCF ubiquitin ligases from the structure of the Skp1–Skp2 complex. Nature 408:381–386

    Article  PubMed  CAS  Google Scholar 

  • Schwartz BS, Stewart WF, Bolla KI, Simon PD, Bandeen-Roche K, Gordon PB, Links JM, Todd AC (2000) Past adult lead exposure is associated with longitudinal decline in cognitive function. Neurology 55:1144–1150

    Article  PubMed  CAS  Google Scholar 

  • Seufert W, Futcher B, Jentsch S (1995) Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373:78–81

    Article  PubMed  CAS  Google Scholar 

  • Shaikh ZA, Vu TT, Zaman K (1999) Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants. Toxicol Appl Pharmacol 154:256–263

    Article  PubMed  CAS  Google Scholar 

  • Sidhu JS, Hong S, Erickson A, Baker A, Robinson J, Vliet P, Faustman EM (2003) Methyl mercury induces differential ubiquitinconjugated protein levels in p53 variant mouse embryonal fibroblasts. Toxicological Sciences 72:67

    Google Scholar 

  • Sidhu JS, Ponce RA, Vredevoogd MA, Yu X, Gribble E, Hong SW, Schneider E, Faustman EM (2006) Cell cycle inhibition by sodium arsenite in primary embryonic rat midbrain neuroepithelial cells. Toxicol Sci 89(2):475–484

    Article  PubMed  CAS  Google Scholar 

  • Stewart D, Killeen E, Naquin R, Alam S, Alam J (2003) Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium. J Biol Chem 278:2396–2402

    Article  PubMed  CAS  Google Scholar 

  • Tenev T, Marani M, McNeish I, Lemoine NR (2001) Pro-caspase-3 overexpression sensitises ovarian cancer cells to proteasome inhibitors. Cell Death Differ 8:256–264

    Article  PubMed  CAS  Google Scholar 

  • Tollefson L, Cordle F (1986) Methylmercury in fish: a review of residue levels, fish consumption and regulatory action in the United States. Environ Health Perspect 68:203–208

    Article  PubMed  CAS  Google Scholar 

  • Tomoda K, Kubota Y, Kato J (1999) Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1. Nature 398:160–165

    Article  PubMed  CAS  Google Scholar 

  • Tsirigotis M, Zhang M, Chiu R, Wouters B, Gray D (2001) Sensitivity of mammalian cells expressing mutant ubiquitin to protein-damaging agents. J Biol Chem 276:46073–46078

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 276:44284–44296

    Article  PubMed  CAS  Google Scholar 

  • Wagenknecht B, Hermisson M, Eitel K, Weller M (1999) Proteasome inhibitors induce p53/p21-independent apoptosis in human glioma cells. Cell Physiol Biochem 9:117–125

    Article  PubMed  CAS  Google Scholar 

  • Weiss B, Clarkson TW, Simon W (2002) Silent latency periods in methylmercury poisoning and in neurodegenerative disease. Environ Health Perspect 110(Suppl 5):851–854

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson KD (1995) Roles of ubiquitinylation in proteolysis and cellular regulation. Annu Rev Nutr 15:161–189

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson KD (1997) Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. Faseb J 11:1245–1256

    PubMed  CAS  Google Scholar 

  • Wilkinson KD (2000) Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol 11:141–148

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson KD (2004) Ubiquitin: a Nobel protein. Cell 119:741–745

    PubMed  CAS  Google Scholar 

  • Wilkinson KD, Ventii KH, Friedrich KL, Mullally JE (2005) The ubiquitin signal: assembly, recognition and termination. Symposium on ubiquitin and signaling. EMBO Rep 6:815–820

    Article  PubMed  CAS  Google Scholar 

  • Wing SS (2003) Deubiquitinating enzymes—the importance of driving in reverse along the ubiquitin-proteasome pathway. Int J Biochem Cell Biol 35:590–605

    Article  PubMed  CAS  Google Scholar 

  • Wintermeyer P, Kruger R, Kuhn W, Muller T, Woitalla D, Berg D, Becker G, Leroy E, Polymeropoulos M, Berger K, Przuntek H, Schols L, Epplen JT, Riess O (2000) Mutation analysis and association studies of the UCHL1 gene in German Parkinson’s disease patients. Neuroreport 11:2079–2082

    Article  PubMed  CAS  Google Scholar 

  • Wu HM, Chi KH, Lin WW (2002) Proteasome inhibitors stimulate activator protein-1 pathway via reactive oxygen species production. FEBS Lett 526:101–105

    Article  PubMed  CAS  Google Scholar 

  • Yang CF, Shen HM, Shen Y, Zhuang ZX, Ong CN (1997) Cadmium-induced oxidative cellular damage in human fetal lung fibroblasts (MRC-5 cells). Environ Health Perspect 105:712–716

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Yu X (2003) Regulation of apoptosis: the ubiquitous way. FASEB J 17:790–799

    Article  PubMed  CAS  Google Scholar 

  • Yew PR (2001) Ubiquitin-mediated proteolysis of vertebrate G1- and S-phase regulators. J Cell Physiol 187:1–10

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Hong S, Faustman EM (2008) Cadmium-induced activation of stress signaling pathways, disruption of ubiquitin-dependent protein degradation and apoptosis in primary rat Sertoli cell-gonocyte cocultures. Toxicol Sci 104:385–396

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Robinson JF, Sidhu JS, Hong S, Faustman EM (2010) A system-based comparison of gene expression reveals alterations in oxidative stress, disruption of ubiquitin-proteasome system and altered cell cycle regulation after exposure to cadmium and methylmercury in mouse embryonic fibroblast. Toxicol Sci 114:356–377

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Sidhu JS, Robinson JF, Hong SW, Faustman EM (2011a) Arsenite induced p53-independent activation of cellular stress response, accumulation of high molecular weight ubiquitin-conjugated proteins (HMW-polyUb) Toxicol Appl Pharmacol. in press

    Google Scholar 

  • Yu X, Sidhu JS, Robinson JF, Hong SW, Faustman EM (2011b) Cadmium induced p53 dependent activation of stress signaling, accumulation of ubiquitinated proteins and apoptosis in mouse embryonic fibroblast cells Toxicol Sci. in press

    Google Scholar 

  • Zhang F, Monkkonen M, Roth S, Laiho M (2002) Proteasomal activity modulates TGF-ss signaling in a gene-specific manner. FEBS Lett 527:58–62

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institute of Environmental Health Sciences (NIEHS), the Environmental Protection Agency (EPA), and the National Science Foundation (NSF) through the following grants: Toxicogenomics (NIEHS: U10 ES 11387 and R01-ES10613) the Center for Children’s Environmental Health Risks Research (NIEHS: 5-P01-ES009601 and EPA: RD-83170901), the Pacific Northwest Center for Human Health and Ocean Sciences (NIH/NIEHS: P50 ES012762 and NSF: OCE-0434087 and OCE-0910624) and the UW NIEHS Center for Ecogenetics and Environmental Health (NIEHS: 5 P30 ES07033). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIEHS, NIH, NSF or EPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine M. Faustman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Yu, X., Ponce, R.A., Faustman, E.M. (2011). Metals Induced Disruption of Ubiquitin Proteasome System, Activation of Stress Signaling and Apoptosis. In: Banfalvi, G. (eds) Cellular Effects of Heavy Metals. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0428-2_14

Download citation

Publish with us

Policies and ethics