Design of Experiments for Gaining Insights and Validating Modeling of Turbulent Combustion

Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 95)

Abstract

This chapter addresses some key issues for consideration in the design and development of experiments that provide a deeper understanding of combustion physics and become benchmarks for the validation of calculations. Close interaction between numerical and experimental approaches has proven to be a key ingredient in advancing the predictive capabilities. A good experiment (i) addresses one or more specific scientific issues, (ii) has well-defined boundary conditions, (iii) is amenable to advanced diagnostics (iv) provides a range of conditions to test trends as well as absolute quantities, (v) makes the detailed data available including information about the accuracy of the measurements, and (vi) responds to the changing needs of modelers as computational approaches change and evolve. A regime diagram for turbulent combustion is first introduced followed by a section that details a series of important considerations in the design and conduct of combustion experiments. The last section provides details of three key burners that stabilize flames spanning most of the turbulent combustion regime from premixed to non- premixed. Highlights and pitfalls in the design of these burners are addressed in some detail.

Keywords

Particle Image Velocimetry Large Eddy Simulation Proper Orthogonal Decomposition Mixture Fraction Turbulent Combustion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Abdeli, Y.M., Masri, A.R.: Recirculation and flow field regimes of unconfined swirling flows. Exp. Therm. Fluid Sci. 27, 655–665 (2003) CrossRefGoogle Scholar
  2. 2.
    Al-Abdeli, Y.M., Masri, A.R.: Stability characteristics and flow fields of turbulent swirling jet flows. Combust. Theor. Model. 7, 731–766 (2003). MATHCrossRefGoogle Scholar
  3. 3.
    Al-Abdeli, Y.M., Masri, A.R., Marquez, G.R., Starner, S.H.: Time varying behaviour of turbulent swirling nonpremixed flames. Combust. Flame 126, 200–214 (2006) CrossRefGoogle Scholar
  4. 4.
    Anselmo-Filho, P., Hochgreb, S., Barlow, R.S., Cant, R.S.: Experimental measurements of geometric properties of turbulent stratified flames. Proc. Combust. Inst. 32, 1763–1770 (2009) CrossRefGoogle Scholar
  5. 5.
    Barlow, R.S., Karpetis, A.N.: Measurements of flame orientation and scalar dissipation in turbulent partially premixed methane flames. Proc. Combust. Inst. 30, 665–672 (2005) CrossRefGoogle Scholar
  6. 6.
    Bedat, B., Cheng, R.K.: Experimental study of premixed flames in intense isotropic turbulence, Combust. Flame 100, 485–494 (1995) CrossRefGoogle Scholar
  7. 7.
    Boileau, M., Staffelbach, G., Cuenot, B., Poinsot, T., Berat, C.: LES of an ignition sequence in a gas turbine engine. Combust. Flame 154, 2–22 (2008) CrossRefGoogle Scholar
  8. 8.
    Bohm, B., Heeger, C., Boxx, I., Meier, W., and Dreizler, A.: Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous high-speed PIV/OH-PLIF. Proc. Combust. Inst. 32, 1647–1654 (2009) CrossRefGoogle Scholar
  9. 9.
    Borghi, R.: Turbulent combustion modelling. Prog. Energy Combust. Sci. 14, 245–292 (1988) CrossRefGoogle Scholar
  10. 10.
    Boxx, I., Heeger, C., Gordon, R., Bohm, B., Aigner, M., Dreizler, A., Meier, W.: Simultaneous three-component PIV/OH-PLIF measurements of a turbulent lifted, C3H8-Argon jet diffusion flame at 1.5kHz repetition rate, Proc. Combust. Inst. 32, 905–912 (2009) CrossRefGoogle Scholar
  11. 11.
    Burbach, J., Hage, M., Janicka, J., Dreizler, A.: Simultaneous phosphor and CARS thermometry at the wall-gas interface within a combustor. Proc. Combust. Inst. 32, 855-8-61 (2009) Google Scholar
  12. 12.
    Brubach J., Patt A., Dreizler A.: Spray thermometry using thermographic phosphors. Appl. Phys. B – Las. Opt. 83, 499–502 (2006) CrossRefGoogle Scholar
  13. 13.
    Cabra, R., Myrvold, T., Chen, J.Y., Dibble, R.W., Karpetis, A.N., Barlow, R.S.: Simultaneous laser Raman-Rayleigh-LIF measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proc. Combust. Inst. 29, 1881–1888 (2002) CrossRefGoogle Scholar
  14. 14.
    Chen, Y.-C., Bilger, R.W.: Experimental investigation of three-dimensional flame-front structure in premixed turbulent combustion II. Lean hydrogen/air Bunsen flames. Combust. Flame 138, 155–174 (2004) CrossRefGoogle Scholar
  15. 15.
    Cheng, T.S., Wehrmeyer, J.A., Pitz, R.W.: Simultaneous temperature and multispecies measurement in a lifted hydrogen diffusion flame. Combust. Flame 91, 323–343 (1992) CrossRefGoogle Scholar
  16. 16.
    Correa, S.M., Gulati, A.: Measurements and modeling of a bluff-body stabilized flame. Combust. Flame 89, 195–213 (1992) CrossRefGoogle Scholar
  17. 17.
    Cosadia, I., Boree, J., Dumont, P.: Coupling time-resolved PIV flow fields and phase invariant proper orthogonal decomposition for the description of the parameter space in a transparent diesel engine. Exp. Fluids 43, 357–370 (2007) CrossRefGoogle Scholar
  18. 18.
    Dally, B.B., Masri, A.R., Barlow, R.S., Fiechtner, G.J., Fletcher, D.F.: Instantaneous and mean compositional structure of bluff-body stabilised nonpremixed flames. Combust. Flame 114, 119–148 (1998) CrossRefGoogle Scholar
  19. 19.
    Dibble, R.W., Hollenbach, R.E.: Laser Rayleigh thermometry in turbulent flames. Proc. Combust. Inst. 18, 1489–1499 (1981) Google Scholar
  20. 20.
    Dibble, R.W., Masri, A.R., Bilger, R.W.: The spontaneous Raman scattering technique applied to nonpremixed flames of methane. Combust. Flame 67, 189–206 (1987) CrossRefGoogle Scholar
  21. 21.
    Di Mare, F., Jones, W.P., Menzies, K.: Large eddy simulation of a model gas turbine combustor. Combust. Flame 137, 278–294 (2004) CrossRefGoogle Scholar
  22. 22.
    Druault, P., Guibert, P., Alizon, F.: Use of proper orthogonal decomposition for time interpolation from PIV data. Application to the cycle-to-cycle variation analysis of in-cylinder engine flows. Exp. Fluids 39, 1009–1023 (2005) CrossRefGoogle Scholar
  23. 23.
    Dunn, M.J., Masri, A.R., Bilger, R.W.: A new piloted premixed jet burner to study strong finite-rate chemistry effects. Combust. Flame 151, 46–60 (2007) CrossRefGoogle Scholar
  24. 24.
    Dunn, M.J., Masri, A.R., Bilger, R.W., Barlow, R.S.: Finite-rate chemistry effects in highly sheared turbulent premixed flames. Flow Turbul. Combust. In press (2010) Google Scholar
  25. 25.
    Dunn, M.J., Masri, A.R., Bilger, R.W., Barlow, R.S., Wang, G-H.: The compositional structure of highly turbulent piloted premixed flames issuing into a hot coflow. Proc. Combust. Inst. 32, 1779–1786 (2009) CrossRefGoogle Scholar
  26. 26.
    Echekki, T., Chen, J.H.: Direct numerical simulation of autoignition in non-homogeneous hydrogen-air mixtures. Combust. Flame 134, 169–191 (2003) CrossRefGoogle Scholar
  27. 27.
    Eckbreth, A.C.: Laser Diagnostics for Combustion Temperature and Species, Gupta, A.K. and Lilley, D.G. Eds, Abacus Press (1987) Google Scholar
  28. 28.
    Ferziger, J.H., and Peric, M.: Computational Methods for Fluid Dynamics, 2nd Ed. Springer (1999) MATHGoogle Scholar
  29. 29.
    Gordon, R.L.: A numerical and experimental investigation of auto-ignition. PhD Dissertation, The University of Sydney (2007) Google Scholar
  30. 30.
    Gordon, R.L., Masri, A.R., Mastorakos, E.: Simultaneous Rayleigh temperature, OH- and CH2O-LIF imaging of methane jets in a vitiated coflow. Combust. Flame 155, 181–195 (2008) CrossRefGoogle Scholar
  31. 31.
    Gordon, R.L., Masri, A.R., Pope, S.B., Goldin, G.M.: A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow. Combust. Theor Model. 11, 351–376 (2007) MATHCrossRefGoogle Scholar
  32. 32.
    Gordon, R.L., Masri, A.R., Pope, S.B., and Goldin, G.M.: Transport budgets in turbulent lifted flames of methane auto-igniting in a vitiated co-flow. Combust. Flame 151, 495–511 (2007) CrossRefGoogle Scholar
  33. 33.
    Gounder, J.D., Masri, A.R.: Flow field and mass flux measurements near the exit plane of spray jets. Presented at the ICLASS 2009, 11th Triennial International Annual Conference on Liquid Atomization and Spray Systems, Vail, Colorado, USA, July 2009 Google Scholar
  34. 34.
    Gounder, J.D., Masri, A.R.: Turbulent spray flames of acetone and ethanol approaching extinction. Combust. Sci. Technol. 182, 702–715 (2010) CrossRefGoogle Scholar
  35. 35.
    Gounder, J.D., Juddoo, M., Masri, A.R., and Starner, S.H.: Difficulties associated with using laser induced fluorescence from NO as a conserved scalar in spray jets and flames, Proceedings of the Fifth Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion, O’Neill, P., and Thiagarajan, K. (Eds.), (ISBN 978-1-74052-177-2), The University of Western Australia, Perth, Australia, pp. 11–14 (2008) Google Scholar
  36. 36.
    Hilbert, R., Thevenin, D.: Autoignition of turbulent non-premixed flames investigated using direct numerical simulations. Combust. Flame 128, 22–37 (2002) CrossRefGoogle Scholar
  37. 37.
    International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames, http://www.ca.sandia.gov/tdf/Workshop.html (2009)
  38. 38.
    International Workshop on Turbulent Combustion in Sprays http://www.FloHeaCom.UGent.be/
  39. 39.
    Ihme, M., Pitsch, H.: Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model 2. Application in LES of Sandia flames D and E. Combust. Flame 155, 90–107 (2008) CrossRefGoogle Scholar
  40. 40.
    Kajitani, L., Dabiri, D.: A full three-dimensional characterization of defocusing digital particle image velocimetry. Meas. Sci. Technol. 16, 790–804 (2005) CrossRefGoogle Scholar
  41. 41.
    Kalt, P.A.M., Al-Abdeli, Y.M., Masri, A.R., Barlow, R.S.: Swirling turbulent non-premixed flames of methane: flowfield and compositional structure. Proc. Combust. Inst. 29, 1913–1919 (2002) CrossRefGoogle Scholar
  42. 42.
    Kaminski, C.F., Engstrom, J., Alden, M.: Quasi-instantaneous two-dimenstional temperature measurements in a spark ignition engine using 2-line atomic fluorescence. Proc. Combust. Inst. 27, 85–93 (1998) Google Scholar
  43. 43.
    Karpetis, A.N., Barlow, R.S.: Measurements of scalar dissipation in a methane/air jet flame. Proc. Combust. Inst. 29, 1929–1936 (2002) CrossRefGoogle Scholar
  44. 44.
    Kempf, A.M., Forkel, H., Sadiki, A., Chen, J.-Y., Janicka, J.: Large-eddy simulation of a counterflow configuration with and without combustion. Proc. Combust. Inst. 28, 35–40 (2000) CrossRefGoogle Scholar
  45. 45.
    Kempf, A., Malalsekera, W., Ranga-Dinesh, K.K.J., Stein, O.: Large eddy Simulations of swirling non-premixed flames with flamelet models: a comparison of numerical methods. Flow Turbul. Combust. 81, 523–561 (2008) CrossRefGoogle Scholar
  46. 46.
    Knudsen, E., Pitsch, H.: A general flamelet transformation useful for distinguishing between premixed and non-premixed modes of combustion. Combust. Flame 156, 678–696 (2009) CrossRefGoogle Scholar
  47. 47.
    Kohse-Hoinghaus, K., Jeffries, J.B., Eds: Applied Combustion Diagnostics, Hemisphere (2002) Google Scholar
  48. 48.
    Lacaze, J., Richardson, E., Poinsot, T.: Large eddy simulation of spark ignition in a turbulent methane jet. Combust. Flame 156, 1993–2009 (2009) CrossRefGoogle Scholar
  49. 49.
    Lindstedt, R.P., Louloudi, S.A., Vaos, E.M.: Joint probability density function modeling of pollutant formation in piloted turbulent jet diffusion flames with comprehensive chemistry. Proc. Combust. Inst. 28, 149–156 (2000) CrossRefGoogle Scholar
  50. 50.
    Lindstedt, R.P., Louloudi, S.A.: Joint scalar transport probability density function modeling of turbulent methanol jet diffusion flames. Proc. Combust. Inst. 29, 2147–2154 (2002) CrossRefGoogle Scholar
  51. 51.
    Magre, P., Dibble, R.W.: Finite chemical kinetic effects in a subsonic turbulent hydrogen flame. Combust. Flame 73, 195–206 (1988) CrossRefGoogle Scholar
  52. 52.
    Magre, P., Moreau, P., Collin, G., Borghi, R., Pealat, M.: Further studies by CARS of premixed turbulent combustion in a high velocity flow. Combust. Flame 71, 147–168 (1988) CrossRefGoogle Scholar
  53. 53.
    Mansour, M.S., Chen, Y.-C., Peters, N.: The reaction zone structure of turbulent premixed methane-helium-air flames near extinction. Proc Combust. Inst. 24, 461–468 (1992) Google Scholar
  54. 54.
    Markides, C.N., Mastorakos, E.: An experimental study of hydrogen autoignition in a turbulent co-flow of heated air. Proc. Combust. Inst. 30, 881–888 (2005) CrossRefGoogle Scholar
  55. 55.
  56. 56.
    Masri, A.R., Bilger, R.W.: Turbulent diffusion flames of hydrocarbon fuels stabilised on a bluff body. Proc. Combust. Inst. 20, 319–326 (1985) Google Scholar
  57. 57.
    Masri, A.R., Bilger, R.W., Dibble, R.W.: Turbulent Nonpremixed Flames of Methane Near Extinction: Probability Density Functions, Combust. Flame 73, 261–285 (1988) CrossRefGoogle Scholar
  58. 58.
    Masri, A.R., Bilger, R.W., Starner, S.H.: Transition and Transport in the Initial Region of a Turbulent Diffusion Flame. Dynamics of Flames and Reactive Systems, AIAA Progress in Astronautics and Aeronautics, (J.R. Bowen, N. Manson, A.K. Oppenheim and R.I. Soloukhin, Eds.) 1984, Vol. 95, pp. 293–304 (1984) Google Scholar
  59. 59.
    Masri, A.R., Dally, B.B., Barlow, R.S., Carter, C.D.: The structure of the recirculation zone of a bluff-body combustor. Proc. Combust. Inst. 25, 1301–1308 (1994) Google Scholar
  60. 60.
    Masri, A.R., Dibble, R.W., Barlow, R.S., The Structure of Turbulent Nonpremixed Flames of Methanol over a Range of Mixing Rates, Combust. Flame 89, 167–185 (1992) CrossRefGoogle Scholar
  61. 61.
    Masri, A.R., Dibble, R.W., Barlow, R.S.: The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements. Prog. Energy Combust. Sci. 22, 307–362 (1996) CrossRefGoogle Scholar
  62. 62.
    Masri, A.R., Pope, S.B., Dally, B.B.: PDF computations of a strongly swirling nonpremixed flame stabilised on a new burner. Proc. Combust. Inst. 28, 123–132 (2000). CrossRefGoogle Scholar
  63. 63.
    Mastorakos, E.: Ignition of turbulent non-premixed flames. Prog. Energy Combust. Sci. 35, 57–97 (2009) CrossRefGoogle Scholar
  64. 64.
    Mastorakos, E., Baritaud, T.B., Poinsot, T.J.: Numerical simulation of autoignition in turbulent mixing flows. Combust. Flame 109, 198–223 (1997) CrossRefGoogle Scholar
  65. 65.
    Medwell, P.R., Chan, Q.N., Kalt, P.A.M., Alwahabi, Z.T., Dally, B.B., Nathan, G.J.: Development of temperature imaging using two-line atomic fluorescence. Appl. Opt. 48, 1237–1248 (2009) CrossRefGoogle Scholar
  66. 66.
    Oefelein, J.C., Sankaran, V., Drozda, T.G.: Large eddy simulation of swirling particle-laden flow in a model axisymmetric combustor. Proc. Combust. Inst. 31, 2291–2299 (2007) CrossRefGoogle Scholar
  67. 67.
    O’Loughlin, W., Juddoo, M., Masri, A.R.: High-speed LIF-OH imaging in the stabilization region of lifted flames. Proc. Australian Combust. Symp. 2009 (Klimenko, A.Y., Cleary, M.J., Feng, B., Rudolph, V., Boyce, R.R., Wandel, A.P., Clements, R., Eds.) (ISBN 978-1-864999802), The University of Queensland, Brisbane, Australia, pp. 91–94 (2009) Google Scholar
  68. 68.
    Omrane, A., Sarner, G., Alden, M.: 2D-temperature imaging of single droplets and sprays using thermographic phosphors. Appl. Phys. B – Las. Opt. 79, 431–434 (2004) Google Scholar
  69. 69.
    Omrane, A., Juhlin, G., Ossler, F., Alden, M.: Temperature measurements of single droplets by use of laser-induced phosphorescence. Appl. Opt. 43, 3523–3529 (2004) CrossRefGoogle Scholar
  70. 70.
    Pierce, C.D., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004) MATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    Pitsch, H., Lageneste, D.D.: Large–eddy simulation of premixed turbulent combustion using a level-set approach. Proc. Combust. Inst. 29, 2001–2008 (2002). CrossRefGoogle Scholar
  72. 72.
    Robin, V., Mura, A., Champion, M., Degardin, O., Renou, B., Boukhalfa, M.: Experimental and numerical analysis of stratified turbulent V-shaped flames. Combust. Flame 153 288–315 (2008) Google Scholar
  73. 73.
    Sankaran, V., Menon, S.: LES of spray combustion in swirling flows. J. Turbulence 3, 11–23 (2002) CrossRefMathSciNetGoogle Scholar
  74. 74.
    Schultz, C., Sick, V.: Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems. Prog. Energy Combust. Sci. 31, 75–121 (2005) CrossRefGoogle Scholar
  75. 75.
    Seffrin, F., Fuest, F., Geyer, D., Dreizler, A.: Flow field studies of a new series of turbulent premixed stratified flames. Combust. Flame 157, 384–396 (2010) CrossRefGoogle Scholar
  76. 76.
    Sreedhara, H., Lakshmisha, K.N.: Assessment of conditional moment closure models of turbulent autoignition using DNS data. Proc. Combust. Inst. 29, 2069–2077 (2002) CrossRefGoogle Scholar
  77. 77.
    Starner, S.H., Gounder, J., Masri, A.R.: Effects of turbulence and carrier fluid on simple, turbulent spray jet flames. Combust. Flame 143, 420–432 (2005) CrossRefGoogle Scholar
  78. 78.
    Steinberg, A.M., Driscoll, J.F., Ceccio, S.L.: Temporal evolution of flame stretch due to turbulence and the hydrodynamic instability. Proc. Combust. Inst. 29, 1713–1721 (2009) CrossRefGoogle Scholar
  79. 79.
    Tang, Q., Xu, J., Pope, S.B.: Probability density function calculations of local extinction and NO production in piloted-jet turbulent methane/air flames. Proc. Combust. Inst. 28, 133–140 (2000) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of Aerospace, Mechanical and Mechatronic EngineeringUniversity of SydneySydneyAustralia

Personalised recommendations