Advertisement

The Evolution of Cyanobacteria and Photosynthesis

  • Gerhart DrewsEmail author
Chapter

Abstract

Oxygenic photosynthesis, i.e. the biosynthesis of carbohydrate from CO2 supported by light-dependent ATP formation and production of O2, evolved very early, presumably about 2,300 million years before present (Ma) when the oxygen content in the atmosphere increased greatly owing to the activity of cyanobacteria. Cyanobacteria were present at least 2,700 Ma in the Archean and Proterozoic eons as evidenced by microfossils, biomarkers such as 2-methylhopanoids, and 13C/12C isotope fractionation. Molecular phylogenetic analyses have shown that the history of the photosystems and reaction centers differ from that of the pigment-synthesizing enzymes. The photosynthetic apparatus of cyanobacteria has a modular structure. It has been postulated that photosystems I and II evolved from an ancestral reaction center 1 in anoxygenic procyanobacteria by gene duplication under the evolutionary pressure of changing redox conditions in the environment. The reaction centers 1 and 2 of anoxygenic phototrophic bacteria may have derived from the ancient reaction center 1 by horizontal gene transfer and the selective pressure of the environment.

Keywords

Reaction Center Horizontal Gene Transfer Lateral Gene Transfer Oxygenic Photosynthesis Green Sulfur Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

I thank Karen Brune for editing the manuscript.

References

  1. Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ, Gordon GW, Scott C, Garvin J and Buick R (2007) A whiff of oxygen before the great oxidation event? Science 317:1903–1906PubMedCrossRefGoogle Scholar
  2. Battistuzzi FA, Feijao A, and Hedges SB (2004) A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol 4(44):1–14Google Scholar
  3. Bekker A, Holland AD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzee IL and Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature (London) 427:117–126PubMedCrossRefGoogle Scholar
  4. Beukes NJ and Klein C (1990) Geochemistry and sedimentology of a facies transition from microbanded to granular iron formation-in the early proterozoic Transvaal supergroup, South Africa. Precambr Res 47:99–139CrossRefGoogle Scholar
  5. Beukes KJ and Klein C (1992) In: Schopf JW and Klein C (eds) Proterozoic biosphere, pp. 147–151. Cambridge University Press, CambridgeGoogle Scholar
  6. Bhattacharya D and Medlin L (1998) Algal phylogeny and the origin of land plants. Plant Physiol 116:9–15CrossRefGoogle Scholar
  7. Bhaya D (2004) Light matters: phototaxis and signal transduction in unicellular cyanobacteria. Mol Microbiol 53:745–754PubMedCrossRefGoogle Scholar
  8. Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33:91–111PubMedCrossRefGoogle Scholar
  9. Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science, OxfordCrossRefGoogle Scholar
  10. Brasier MD, Green OR, Jephcoat AP, Kleppe AK, Van Kranendonk MJ, Lindsay JF, Steele A and Grassineau NV (2002) Questioning the evidence for earth’s oldest fossils. Nature (London) 416:76–81PubMedCrossRefGoogle Scholar
  11. Buttner M, Xie DL, Nelson H, Pinther W, Hauska G and Nelson N (1992) Photosynthetic reaction center genes in green sulphur bacteria and in photosystem I are related. Proc Natl Acad Sci U S A 89:8135–8139PubMedCrossRefGoogle Scholar
  12. Canfield DE, Poulton SW and Narbonne GM (2007) Late-neoproterzoic deep-ocean oxygenation and the rise of animal life. Science 315:92–94PubMedCrossRefGoogle Scholar
  13. Canfield DE, Poulton SW, Knoll AH, Narbonne GM, Ross G, Goldberg T and Strauss H (2008) Ferruginous conditions dominated later neoproteozoic deep-water chemistry. Science 321:949–952Google Scholar
  14. Capone DG, Zehr JP, Paerl HW, Bergman B and Carpenter EJ (1997) Trichodesmium, a globally significant marine cyanobacterium. Science 276:1221–1229CrossRefGoogle Scholar
  15. Catling D, Zahnle KJ and McKay CP (2001) Biogenic methane, hydrogen escape, and the irreversible oxidation of early earth. Science 293:839–843PubMedCrossRefGoogle Scholar
  16. Cavalier-Smith T (2006) Cell evolution and earth history: stasis and revolution. Phil Trans R Soc B 361:969–1006PubMedCrossRefGoogle Scholar
  17. Chandler FW (1980) Proterozoic redbed sequences of Canada. Can Geol Surv Bull 311:1–53Google Scholar
  18. Choudhary M and Kaplan S (2000) DNA sequence analysis of the photosynthetic region of Rhodobacter sphaeroides 2.4.1. Nucleic Acids Res 28:862–867PubMedCrossRefGoogle Scholar
  19. Clemmey H and Badham N (1982) Oxygen in the Precambrian atmosphere: an evaluation of the geological evidence. Geology 10:141–146CrossRefGoogle Scholar
  20. Cohn F (1867) Beiträge zur Physiologie der Phycochromaceen und Florideen. Arch Mikrosk Anat III:1–60Google Scholar
  21. Cohn F (1875) Untersuchungen über Bakterien II. Beitr Biol Pfl 1(3):141–207Google Scholar
  22. Drews G and Nultsch W (1962) Spezielle Bewegungsmechanismen von Einzellern. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, vol 17/2, pp. 887–894. Springer, BerlinGoogle Scholar
  23. El Tabakh M, Grey K, Pirajon F and Schreiber BC (1999) Pseudomorphs after evaporitic minerals interbedded with 2.2 Ga stromatolites of the Yerriba Basin, Western Australia: origin and significance. Geology 27:871–874CrossRefGoogle Scholar
  24. England GL, Rasmussen B, Krapez B and Groves DL (2002) Paleoenvironmental significance of rounded pyrite in siliciclastic sequences of the late Archean Witwatersrand basin: oxygen-deficient atmosphere or hydrothermal alteration? Sedimentology 49:1133–1156CrossRefGoogle Scholar
  25. Goldblatt C, Lenton TM and Watson AJ (2006) Bistability of atmospheric oxygen and the great oxidation. Nature (London) 443:683–686CrossRefGoogle Scholar
  26. Granick S (1957) Speculations on the origin and evolution of photosynthesis. Ann N Y Acad Sci 69:292–308PubMedCrossRefGoogle Scholar
  27. Grossman AR, Bhaya D, Apt KE and Kehoe DM (1995) Light-harvesting complexes in oxygenic photosynthesis. Diversity, control and evolution. Ann Rev Genet 29:231–288PubMedCrossRefGoogle Scholar
  28. Gupta RS (2003) Evolutionary relationship among photosynthetic bacteria. Photosynth Res 76:173–183PubMedCrossRefGoogle Scholar
  29. Gupta RS, Mukhtar T and Singh B (1999) Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chloroum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum and protobacteria): implications regarding the origin of photosynthesis. Mol Microbiol 32:893–906PubMedCrossRefGoogle Scholar
  30. Hartman H (1998) Photosynthesis and the origin of life. Origins Life Evol Biosphere 28:515–521CrossRefGoogle Scholar
  31. Heathcote P, Fyfe PK and Jones MR (2002) Reaction centres; the structure and evolution of biological solar power. TIBS 27:79–87PubMedGoogle Scholar
  32. Holland HD (1994) In: Bengston S (ed) Early Life on Earth, pp. 237–244. Columbia University Press, New YorkGoogle Scholar
  33. Jain R, Rivera MC and Lake JA (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci U S A 96:3801–3806PubMedCrossRefGoogle Scholar
  34. Kasting JF (2006) Ups and downs of ancient oxygen. Nature (London) 443:643–645CrossRefGoogle Scholar
  35. Kaufman AJ, Johnston DT, Farquhar J, Masterson AL, Lyons TW, Bates S, Anbar AD, Arnold GL, Garvin J and Buick R (2007) Late Archean biosphere oxygenation and atmospheric evolution. Science 317:1900–1903PubMedCrossRefGoogle Scholar
  36. Knoll AH (2003) Life on a young planet. Princeton University Press, PrincetonGoogle Scholar
  37. Kühl M, Chen M, Ralph PJ, Schreiber U and Larkum AWD (2005) A niche for cyanobacteria containing chlorophyll d. Nature (London) 433:820CrossRefGoogle Scholar
  38. Lewin RA (1976) Prochlorophyta as a proposed new division of algae. Nature 261:697–698PubMedCrossRefGoogle Scholar
  39. Mathis P (1990) Compared structure of plant and bacterial photosynthetic reaction centers. Evolutionary implications. Biochim Biophys Acta 1018:163–167CrossRefGoogle Scholar
  40. Mauzerall D (1992) Light, iron, Sam Granick and the origin of life. Photosynth Res 33:163–170CrossRefGoogle Scholar
  41. Meyer TE (1994) Evolution of photosynthetic reaction centers and light harvesting chlorophyll proteins. BioSystems 33:167–175PubMedCrossRefGoogle Scholar
  42. Meyer TE, van Beeumen JJ, Ambler RP and Cusanovich MA (1996) The evolution of electron transfer proteins in photosynthetic bacteria and denitrifying pseudomonads. In: Baltscheffsky H (ed) Origin and Evolution of Biological Energy Conversion, pp. 71–108. VCH, New YorkGoogle Scholar
  43. Mix LJ, Haig D and Cavanaugh CM (2005) Phylogenetic analyses of the core antenna domain: investigating the origin of photosystem I. J Mol Evol 60:153–163PubMedCrossRefGoogle Scholar
  44. Mulkidjanian AY and Junge W (1997) On the origin of photosynthesis as inferred from sequence analysis. Photosynth Res 51:27–42CrossRefGoogle Scholar
  45. Mulkidjanian AY, Koonin EV, Makaarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D and Haselkorn R (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci U S A 103:13126–13131PubMedCrossRefGoogle Scholar
  46. Nisbet EG, Cann JR and van Dover CL (1995) Origins of photosynthesis. Nature 373:479–480CrossRefGoogle Scholar
  47. Nitschke W, Mühlenhoff U and Liebl U (1998) Evolution. In: Raghavendra A (ed) Photosynthesis: A Comprehensive Treatise, pp. 285–304. Cambridge University Press, CambridgeGoogle Scholar
  48. Nultsch W (1962) Der Einfluß des Lichtes auf die Bewegung der Cyanophyceen: Photophobotaxis bei Phormidium uncinatum. Planta 58:647–663CrossRefGoogle Scholar
  49. Nultsch W and Häder DP (1974) Über die Rolle der beiden Photosysteme in der Photophobo-taxis von Phormidium uncinatum. Ber Dtsch Bot Ges 87:83–97Google Scholar
  50. Ohmoto H (1996) Evidence in pre-2.2 Ga paleosols for the early evolution of the atmospheric oxygen and terrestrial biota. Geology 24:1135–1138PubMedCrossRefGoogle Scholar
  51. Olson JM and Blankenship RE (2004) Thinking about the evolution of photosynthesis. Photosynth Res 80:373–386PubMedCrossRefGoogle Scholar
  52. Olson JM and Pierson BK (1987a) Evolution of reaction centers in photosynthetic prokaryotes. Ann Rev Cytol 108:209–248CrossRefGoogle Scholar
  53. Olson JM and Pierson BK (1987b) Origin and evolution of photosynthetic reaction centers. Orig Life 17:419–430CrossRefGoogle Scholar
  54. Oyaizu H, Debrunner-Vossbrinck B, Mandelco L, Studier JA and Woese CR (1987) The green non-sulfur bacteria: a deep branching in the eubacterial line of descent. Syst Appl Microbiol 9:47–53PubMedCrossRefGoogle Scholar
  55. Pace NR (2006) Time for a change. Nature (London) 441:46–51CrossRefGoogle Scholar
  56. Palenik B and Haselkorn R (1992) Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes. Nature (London) 355:265–267CrossRefGoogle Scholar
  57. Partensky F, Hess WR and Vanlot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127PubMedGoogle Scholar
  58. Rasmussen B (2000) Filamentous microfossils in a 3,235-million-years-old volcanogenic massive sulphide. Nature 405:676–679PubMedCrossRefGoogle Scholar
  59. Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY and Blankenship RE (2002) Whole-genome analysis of photosynthetic prokaryotes. Science 298:1616–1620PubMedCrossRefGoogle Scholar
  60. Raymond J, Zhaxybayeva O, Gogarten JP and Blankenship RE (2003) Evolution of photo-synthetic prokaryotes: a maximum likelihood mapping approach. Phil Trans R Soc B 358:223–230PubMedCrossRefGoogle Scholar
  61. Raymond J, Siefert J, Staples C and Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554PubMedCrossRefGoogle Scholar
  62. Sato N (2002) Comparative analysis of the genomes of cyanobacteria and plants. Genome Inform 13:173–182PubMedGoogle Scholar
  63. Schopf JW (1993) Microfossils of the early Archean apex chert: new evidence of the antiquity of life. Science 260:640–646PubMedCrossRefGoogle Scholar
  64. Schopf JW (1994) In: Bengtson S (ed) Early Life on Earth, pp. 193–206. Columbia University Press, New YorkGoogle Scholar
  65. Schopf JW (1999) The Cradle of Life. Princeton University Press, New YorkGoogle Scholar
  66. Schopf JW and Packer BM (1987) Early Archean (3.3 billion to 3.5 billion year-old) microfossils from Warrawoona group, Australia. Science 237:70–73PubMedCrossRefGoogle Scholar
  67. Schubert WD, Klukas O, Saenger W, Witt HT, Fromme P and Krauß N (1998) A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I. J Mol Biol 280:297–314PubMedCrossRefGoogle Scholar
  68. Shi T and Falkowski PG (2008) Genome evolution in cyanobacteria: the stable core and the variable shell. Proc Natl Acad Sci U S A 105:2510–2515PubMedCrossRefGoogle Scholar
  69. Staley JT, Bryant MP, Pfennig N and Holt JG (eds) (1989) Bergey’s Manual of Systematic Bacteriology, vol. 3. Williams & Wilkins, BaltimoreGoogle Scholar
  70. Steinberg-Yfrach G, Liddell PA, Hung S-C, Moore AL, Gust D and Moore TA (1997) Conversion of light-energy to proton potential in liposomes by artificial photosynthetic reaction center. Nature (London) 385:239–241CrossRefGoogle Scholar
  71. Summons RE, Jahnke LL, Hope M and Logan GA (1999) 2-methylhopanoids as biomarker for cyanobacterial oxygenetic photosynthesis. Nature (London) 400:554–557CrossRefGoogle Scholar
  72. Swingley WD, Blankenship RE and Raymond J (2008) Integrating Markov clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families. Mol Biol Evol 25:643–654.PubMedCrossRefGoogle Scholar
  73. Tice MM and Lowe DR (2004) Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature (London) 431:549–551CrossRefGoogle Scholar
  74. Tice MM and Lowe DR (2006) Hydrogen based carbon fixation in the earliest known photosynthetic organism. Geology 34:37–40CrossRefGoogle Scholar
  75. Tomitani A, Okada K, Miyashita H, Matthija, HCP, Ohno T and Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature (London) 400:159–162CrossRefGoogle Scholar
  76. Tomitani A, Knoll AH, Cavanaugh CM and Ohno T (2006) The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci U S A 103:5442–5447PubMedCrossRefGoogle Scholar
  77. Urbach E, Robertson DL and Chisholm SW (1992) Multiple evolutionary origin of prochlorophytes within the cyanobacterial radiation. Nature 355:267–270PubMedCrossRefGoogle Scholar
  78. Valadez R (2000) In: Crockford SJ (ed) Dogs Through Time: An Archaeological Perspective, pp. 193–204. British Archaeological Reports, OxfordGoogle Scholar
  79. Vermaas WF (1994) Evolution of heliobacteria: implications for photosynthetic reaction Center complexes. Photosynth Res 41:285–294PubMedCrossRefGoogle Scholar
  80. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedGoogle Scholar
  81. Wolfe GR, Cunningham FX, Durnford D, Green BR and Gantt E (1994) Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature (London) 367:566–568CrossRefGoogle Scholar
  82. Xiong J and Bauer CE (2002a) A cytochrome b origin of photosynthetic reaction centers: an evolutionary link between respiration and photosynthesis. J Mol Biol 322:1025–1037CrossRefGoogle Scholar
  83. Xiong J and Bauer CE (2002b) Complex evolution of photosynthesis. Annu Rev Plant Biol 53:503–521CrossRefGoogle Scholar
  84. Xiong J, Inoue K and Bauer CE (1998) Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc Natl Acad Sci U S A 95:14851–14856PubMedCrossRefGoogle Scholar
  85. Xiong J, Fischer WM, Inoue K, Nakahara M and Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1730PubMedCrossRefGoogle Scholar
  86. Yang W and Holland HD (2002) The redox-sensitive trace elements. Mo, U, and Re in Precambrian carbonaceous shales: indicators of the great oxidation event. Geol Soc Am Abstr Programs 34:381Google Scholar
  87. Zehr JP, Waterbury JB, Turner PJ, Montoya JP, Omoregie E, Steward GF, Hansen A and Karl DM (2001) Unicellular cyanobacteria fix N2 in the subtropical north pacific ocean Nature (London) 412:635–638CrossRefGoogle Scholar
  88. Zhaxybayeva O, Hamel L, Raymond J and Gogarten JP (2004) Visualization of the phylogenetic content of five genomes using dekapentagonal maps. Genome Biol 5:R20PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Biology 2, MicrobiologyAlbert-Ludwigs-UniversitätFreiburgGermany

Personalised recommendations