Electromagnetic Images of the South and Central American Subduction Zones

Part of the IAGA Special Sopron Book Series book series (IAGA, volume 1)


Current and fossil plate margins offer some of the most rewarding targets for geophysical studies. Particularly, the fluid/melt cycle in subduction zones continues to be of major interest for seismological as well as deep electromagnetic (EM), specifically magnetotelluric investigations. In this contribution we describe a number of experiments which have been conducted in several ocean-continent convergence zones around the world, with a focus on the Andes and Central America, respectively. Zones of potentially high electrical conductivity range from bending-related faulting near the outer rise, the subduction channel at the tip of the continental plate, the dehydration-hydration cycles in and above the downgoing plate, the assumed melting of the asthenospheric wedge to the rise of melts toward the volcanic arc and the magma chambers beneath the volcano edifices. Further targets include fault zones in the forearc, accommodating tensional stress, as well as hydrothermal and mineral deposits, to mention a few. The following chapters emphasize on a variety of structures along continental margins and show the potential of deep EM in this geodynamic setting.


Apparent Resistivity Induction Vector Strike Direction Anisotropic Layer Induction Arrow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author wants to thank the partner institutions in Chile (Universidad Católica del Norte, Universidad de Concepción), Bolivia (Universidad Mayor de San Andrés), Argentina (Universidad Nacional de Salta, Universidad de Buenos Aires), Costa Rica (Instituto Costarricense de Electricidad) and Nicaragua (Instituto Nicaragüense de Estudios Territoriales); without their logistical support this work would not have been possible. The help of many members and students from these institutions and the Free University of Berlin is also gratefully acknowledged. Funding was provided by German Science Foundation (DFG) through numerous grants to the author.


  1. Aizawa K, Ogawa Y, Ishido T (2009) Groundwater flow and hydrothermal systems within volcanic edifices: delineation by electric self-potential and magnetotellurics. J Geophys Res 114:B01208. doi:10.1029/2008JB005910CrossRefGoogle Scholar
  2. Allmendinger RW, Jordan TE, Kay SM, Isacks BL (1997) The evolution of the altiplano-puna plateau of the central andes. Ann Rev Earth Planet Sci 25:139–174CrossRefGoogle Scholar
  3. ANCORP Working Group (2003) Seismic imaging of an active continental margin and plateau in the central Andes (Andean Continental Research Project 1996 (ANCORP ’96)). J Geophys Res 108 doi:10.1029/2002JB001771Google Scholar
  4. Asch G, Schurr B, Bohm M, Yuan X, Haberland C, Heit B, Kind R, Woelbern I, Bataille K, Comte D, Pardo M, Viramonte J, Rietbrock A, Giese P (2006) Seismological studies of the central and southern andes. In: Oncken O et al. (eds) The Andes: active subduction orogeny, frontiers in earth sciences. Springer, Berlin, pp 443–458Google Scholar
  5. Assumpcão M (1992) The regional intraplate stress field in South America. J Geophys Res 97:11889–11903CrossRefGoogle Scholar
  6. Asters RC, Borchers B, Thurber CH (2005) Parameter estimation and inverse problems. International Geophysics Series, 90. Elsevier, AmsterdamGoogle Scholar
  7. Bahr K (1988) Interpretation of the magnetotelluric impedance tensor: regional induction and local telluric distortion. J Geophys 62:119–127Google Scholar
  8. Barboza G, Fernández JA, Barrientos J, Bottazi G (1997) Costa rica: petroleum geology of the Caribbean margin. Lead Edge 16:1787–1794CrossRefGoogle Scholar
  9. Baumont D, Paul A, Beck S, Zandt G (1999) Strong crustal heterogeneity in the Bolivian Altiplano as suggested by attenuation of Lg waves. J Geophys Res 104:20287–20305CrossRefGoogle Scholar
  10. Bohm M, Lüth S, Echtler H, Asch G, Bataille K, Bruhn C, Rietbrock A, and Wigger P (2002) The Southern Andes between 36° and 40°S latitude: seismicity and average seismic velocities. Tectonophysics 356:275–289CrossRefGoogle Scholar
  11. Booker JR, Favetto A, Pomposiello MC (2004) Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina. Nature 429:399–403CrossRefGoogle Scholar
  12. Brasse H, Eydam D (2008) Electrical conductivity beneath the Bolivian Orocline and its relation to subduction processes at the South American continental margin. J Geophys Res 113:B07109. doi:10.1029/2007JB005142CrossRefGoogle Scholar
  13. Brasse H, Kapinos G, Li Y, Mütschard L, Eydam D (2009) Structural electrical anisotropy in the crust at the South-Central Chilean continental margin as inferred from geomagnetic transfer functions. Phys Earth Planet Inter. doi:10.1016/j.pepi.2008.10.017Google Scholar
  14. Brasse H, Lezaeta P, Rath V, Schwalenberg K, Soyer W, Haak V (2002) The Bolivian Altiplano conductivity anomaly. J Geophys Res 107. doi:10.1029/2001JB000391Google Scholar
  15. Brasse H, Soyer W (2001) A magnetotelluric study in the Southern Chilean Andes. Geophys Res Lett 28:3757–3760CrossRefGoogle Scholar
  16. Bruhn D, Siegfried R, Schilling F (2004) Electrical resistivity of dehydrating serpentinite. Eos Trans AGU 85(Fall Meet. Suppl):Abstract T41B-1176Google Scholar
  17. Cahill TA, Isacks BL (1992) Seismicity and the shape of the subducted Nazca Plate. J Geophys Res 97:17503–17529CrossRefGoogle Scholar
  18. Calder ES, Harris AJL, Peña P, Pilger E, Flynn LP, Fuentealba G, Moreno H (2004) Combined thermal and seismic analysis of the Villarrica volcano lava lake, Chile. Rev geol Chile 31:259–272CrossRefGoogle Scholar
  19. Caldwell TG, Bibby HM, Brown C (2004) The magnetotelluric phase tensor. Geophys J Int 158:457–469CrossRefGoogle Scholar
  20. Carr MJ, Feigenson MD, Patino LC, Walker JA (2003) Volcanism and geochemistry in Central America: progress and problems. In: Eiler J (ed) Inside the subduction factory. Geophysical Monograph Series, vol 138. AGU, Washington, DC, pp 153–179Google Scholar
  21. Cembrano J, Hervé F, Lavenu A (1996) The Liquiñe Ofqui fault zone: a long-lived intra-arc fault system in southern Chile. Tectonophysics 259:55–66CrossRefGoogle Scholar
  22. Cembrano J, Lavenu A, Yañez G, Riquelme R, García M, González G, Hérail G (2007) Neotectonics. In: Moreno T, Gibbons W (eds) The geology of chile. Geological Society London, pp 231–261Google Scholar
  23. Chave AD, Constable SC, Edwards RN (1991) Electrical exploration methods for the seafloor. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics, vol 2. Society of Exploration Geophysicists, Tulsa, pp 931–966Google Scholar
  24. Cifuentes I (1989) The 1960 Chilean earthquakes. J Geophys Res 94:665–680CrossRefGoogle Scholar
  25. Comte D, Dorbath L, Pardo M, Monfret T, Haessler H, Rivera L, Frogneux M, Glass B, Meneses C (1999) A double-layered seismic zone in Arica, northern Chile. Geophys Res Lett 26. doi:10.1029/1999GL900447Google Scholar
  26. David C (2007) Comportamiento actual del ante-arco y del arco del codo de Arica en la orogénesis de los Andes centrales. PhD thesis, Universidad de Chile, SantiagoGoogle Scholar
  27. Davies JH (1999) The role of hydraulic fractures and intermediate-depth earthquakes in generating subduction-zone magmatism. Nature 398:142–145CrossRefGoogle Scholar
  28. DeMets C (2001) A new estimate for present-day Cocos-Caribbean plate motion: implications for slip along the central American Volcanic Arc. Geophys Res Lett 28:4043-4046CrossRefGoogle Scholar
  29. DeShon HR, Schwartz SY (2004) Evidence for serpentinization of the forearc mantle wedge along the Nicoya Peninsula, Costa Rica. Geophys Res Lett 31. doi:10.1029/2004GL021179Google Scholar
  30. Diaz D (2010) Magnetotelluric investigation of the volcanic arc in the Central Andes with special emphasis on Lascar volcano. PhD thesis, Free University of BerlinGoogle Scholar
  31. Dorbath C, Granet M (1996) Local earthquake tomography of the Altiplano and the Eastern Cordillera of northern Bolivia. Tectonophysics 259:117–136CrossRefGoogle Scholar
  32. Dorbath C, Masson F (2000) Composition of the crust and upper-mantle in the central Andes (19°30S) inferred from P wave velocity and Poisson’s ratio. Tectonophysics 327:213–223CrossRefGoogle Scholar
  33. Egbert GD (1997) Robust multiple-station magnetotelluric data processing. Geophys J Int 130:475–496CrossRefGoogle Scholar
  34. Elger K, Oncken O, Glodny J (2005) Plateaustyle accumulation of deformation: Southern Altiplano. Tectonics 24. doi:10.1029/2004TC001675Google Scholar
  35. Elming SA, Rasmussen T (1997) Results of magnetotelluric and gravimetric measurements in western Nicaragua, central America. Geophys J Int 128:647–658CrossRefGoogle Scholar
  36. Engdahl ER, Villaseñor A (2002) Global seismicity: 1900–1999. In: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds) International handbook of earthquake and engineering seismology, part A. Academic Press, Burlington, MA, pp 665–690Google Scholar
  37. Evans RL, Chave AD, Booker JR (2002) On the importance of offshore data for magnetotelluric studies of ocean-continent subduction systems. Geophys Res Lett 29. doi: 10.1029/2001GL013960Google Scholar
  38. Eydam D (2008) Magnetotellurisches Abbild von Fluid- und Schmelzprozessen in Kruste und Mantel der zentralen Anden. Diploma thesis, Fachrichtung Geophysik, FU BerlinGoogle Scholar
  39. Folguera A, Zapata T, Ramos VA (2006) Late Cenozoic extension and the evolution of the Neuquén Andes. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°– 39°S lat). Geol Soc Am Spec Paper 407. doi:10.1130/ 2006.2407(12)Google Scholar
  40. Friedel S (1997) Elektromagnetische Tiefensondierungen in Nordchile unter Berücksichtigung der Sq-Variationen und des EEJ. Diploma thesis, Fachrichtung Geophysik, FU BerlinGoogle Scholar
  41. Gaetani GA, Grove TL (2003) Experimental constraints on melt generation in the mantle wedge. In: Eiler J (ed) Inside the subduction factory. Geophysical Monograph vol 138. American Geophysical Union, Washington, DC pp 107–133Google Scholar
  42. Gaillard F (2004) Laboratory measurements of electrical conductivity of hydrous and dry silicic melts under pressure. Earth Planet Sci Lett 218:215–228CrossRefGoogle Scholar
  43. Gaillard F, Malki M, Iacono-Marziano G, Pichavant M, Scaille B (2008) Carbonatite melts and electrical conductivity in the asthenosphere. Science 322. doi:10.1126/science.1164446Google Scholar
  44. Gazel E, Denyer P, Baumgartner PO (2006) Magmatic and geotectonic significance of Santa Elena Peninsula, Costa Rica Geol Acta 4:193–202Google Scholar
  45. Glodny J, Echtler H, Figueroa O, Franz G, Gräfe K, Kemnitz H, Kramer W, Krawczyk C, Lohrmann J, Lucassen F, Melnick D, Rosenau M, Seifert W (2006) Long-term geological evolution and mass-flow balance of the South-Central Andes. In: Oncken O et al. (eds) The Andes: active subduction orogeny, frontiers in earth sciences. Springer, Berlin, pp 401–428Google Scholar
  46. Gonzáles-Ferrán O (1994) Volcanes de Chile. Instituto Geográfico Militar, Santiago de Chile, 640ppGoogle Scholar
  47. Groß K, Micksch U, TIPTEQ Research Group, Seismics Team (2007) The reflection seismic survey of project TIPTEQ – the inventory of the Chilean subduction zone at 38.2°S. Geophys J Int. doi:10.1111/j.1365-246X.2007.03680.xGoogle Scholar
  48. Grove TL, Chatterjee N, Parman SW, Médard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249:74–89CrossRefGoogle Scholar
  49. Haberland C, Rietbrock A, Lange D, Bataille K, Hofmann S (2006) Interaction between forearc and oceanic plate at the south-central Chilean margin as seen in local seismic data. Geophys Res Lett 33. doi:10.1029/2006GL028189Google Scholar
  50. Haberland C, Rietbrock A, Schurr B, Brasse H (2003) Coincident anomalies of seismic attenuation and electrical resistivity beneath the southern Bolivian Altiplano plateau. Geophys Res Lett 30. doi:10.1029/2003GL017492Google Scholar
  51. Hacker BR, Peacock SM, Abers GA, Holloway SD (2003) Subduction factory, 2, Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J Geophys Res 108. 10.1029/2001JB001129Google Scholar
  52. Hamza VM, Muñoz M (1996) Heat flow map of South America. Geothermics 25:599–646CrossRefGoogle Scholar
  53. Hauff F, Hoernle K, van den Bogaard P, Alvarado G, Garbe-Schönberg D (2000) Age and geochemistry of basaltic complexes in western Costa Rica: contributions to the geotectonic evolution of Central America. Geochem Geophys Geosyst 1. doi:10.1029/1999GC000020Google Scholar
  54. Heise W, Caldwell TG, Bibby HM, Bennie SL (2010) Three-dimensional electrical resistivity image of magma beneath an active continental rift, Taupo Volcanic Zone, New Zealand. Geophys Res Lett 37:L10301. doi:10.1029/2010GL043110CrossRefGoogle Scholar
  55. Heise W, Pous J (2001) Effects of anisotropy on the two-dimensional inversion procedure. Geophys J Int 147:610–621CrossRefGoogle Scholar
  56. Heit BS (2005) Teleseismic tomographic images of the Central Andes at 21°S and 25.5°S: an inside look at the Altiplano and Puna plateaus. PhD thesis, FU BerlinGoogle Scholar
  57. Hérail G, Rochat P, Baby P, Aranibar O, Lavenu A, Masclez G (1997) El Altiplano Norte de Bolivia, evolución geológica terciaria, El Altiplano: ciencia y conciencia en los Andes, Actas 2. In: Charrier R et al. (eds) Simposio Internacional Estudios Altiplánicos, Arica 1993. Universidad de Chile, Santiago, pp 33–44Google Scholar
  58. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489CrossRefGoogle Scholar
  59. Hill GJ, Caldwell TG, Heise W, Chertkoff DG, Bibby HM, Burgess MK, Cull JP, Cas RAF (2009) Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data. Nat. Geosci. doi:10.1038/NGEO661Google Scholar
  60. Hoernle K, Hauff F (2000) Oceanic igneous provinces. In: Bundschuh J, Alvarado GE (eds) Central America: geology, resources, hazards, vol 1. Taylor & Francis, London, pp 523–548Google Scholar
  61. Husen S, Quintero R, Kissling E, Hacker BR (2003) Subduction zone structure and magmatic processes beneath Costa Rica as constrained by local earthquake tomography and petrologic modeling. Geophys J Int 155:11–32CrossRefGoogle Scholar
  62. James DE (1971) Andean crustal and upper mantle structure. J Geophys Res 76:3246–3271CrossRefGoogle Scholar
  63. James DE, Sacks JW (1999) Cenozoic formation of the central Andes: a geophysical perspective. In: Skinner B (ed) Geology and ore deposits of the central Andes. Society of Economic Geologists Special Publication 7, Littleton, CO, pp 1–25Google Scholar
  64. Jiracek G, Curtis J, Ramirez J, Martinez M, Romo J (1989) Two-dimensional magnetotelluric inversion of the EMSLAB lincoln line. J Geophys Res 94:14145–14151CrossRefGoogle Scholar
  65. Jödicke H, Jording A, Ferrari L, Arzate J, Mezger K, Rüpke L (2006) Fluid release from the subducted Cocos plate and partial melting of the crust deduced from magnetotelluric studies in southern Mexico: implications for the generation of volcanism and subduction dynamics. J Geophys Res 111. doi:10.1029/2005JB003739Google Scholar
  66. Kapinos G (2011) Amphibious magnetotellurics at the South-Central Chilean continental margin. PhD thesis, Free University of BerlinGoogle Scholar
  67. Kay SM, Mpodozis C (2001) Central Andean Ore deposits linked to evolving shallow subduction systems and thickening crust. GSA Today 11:4–9CrossRefGoogle Scholar
  68. Kirby SH, Engdahl ER, Denlinger R (1996) Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs. In: Bebout GE et al. (eds) Subduction: top to bottom. Geophysical Monograph Series, vol 96. AGU, Washington, DC, pp 195–214Google Scholar
  69. Klotz J, Abolghasem A, Khazaradze G, Heinze B, Vietor T, Hackney R, Bataille K, Maturana R, Viramonte J, Perdomo R (2006) Long-term signals in the present-day deformation field of the central and Southern Andes and constraints on the viscosity of the Earth’s Upper Mantle. In: Oncken O et al. (eds) The Andes: active subduction orogeny, frontiers in earth sciences. Springer, Berlin, pp 65–89Google Scholar
  70. Krawczyk CM, Mechie J, Tašárová Z, Lüth S, Stiller M, Brasse H, Echtler H, Bataille K, Wigger P, Araneda M (2006) Geophysical signatures and active tectonics at the South-Central Chilean Margin. In: Oncken O et al. (eds) The Andes: active subduction orogeny, frontiers in earth sciences. Springer, Berlin, pp 171–192Google Scholar
  71. Lamb S, Davis P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425:792–797CrossRefGoogle Scholar
  72. Lara LE, Naranjo JA, Moreno H (2004) Rhyodacitic fissure eruption in Southern Andes (Cordón Caulle; 40.5°S) after the 1960 (Mw:9.5) Chilean earthquake: a structural interpretation. J Volc Geotherm Res 138:127–138CrossRefGoogle Scholar
  73. Lezaeta P (2001) Distortion analysis and 3-D modeling of magnetotelluric data in the Southern Central Andes. PhD thesis, FU BerlinGoogle Scholar
  74. Lezaeta P, Brasse H (2001) Electrical conductivity beneath the volcanoes of the NW Argentinian Puna. Geophys Res Lett 28:4651–4654CrossRefGoogle Scholar
  75. Lezaeta P, Muñoz M, Brasse H (2000) Magnetotelluric image of the crust and upper mantle in the backarc of the NW Argentinean Andes. Geophys J Int 142:841–854CrossRefGoogle Scholar
  76. Li Y (2002) A finite element algorithm for electromagnetic induction in two-dimensional anisotropic conductivity structures. Geophys J Int 148:389–401CrossRefGoogle Scholar
  77. López-Escobar L, Cembrano J, Moreno H (1995) Geochemistry and tectonics of the Chilean Southern Andes basaltic Quaternary volcanism (37–46°S). Rev Geol Chile 22:219–234Google Scholar
  78. Lüth S, Wigger P (2003) A crustal model along 39°S from a seismic refraction profile – ISSA 2000. Rev Geol Chile 30:83–101Google Scholar
  79. MacKenzie L, Abers GA, Fischer KM, Syracuse EM, Protti JM, Gonzalez V, Strauch W (2008) Crustal structure along the southern Central American volcanic front. Geochem Geophys Geosyst 9:Q08S09. doi:10.1029/2008GC001991CrossRefGoogle Scholar
  80. Mackie RL, Smith JT, Madden TR (1994) Three-dimensional modeling using finite difference equations: the magnetotelluric example. Radio Sci 29:923–935CrossRefGoogle Scholar
  81. Mann P, Rogers RD, Gahagan L (2007) Overview of plate tectonic history and its unresolved tectonic problems. In: Bundschuh J, Alvarado GE (eds) Central America: geology, resources, hazards, vol 1. Taylor & Francis, London, pp 201–238Google Scholar
  82. McNeice GW, Jones AG (2001) Multi-site, multi-frequency tensor decomposition of magnetotelluric data. Geophysics 66:158–173CrossRefGoogle Scholar
  83. Melnick D, Rosenau M, Folguera A, Echtler H (2006) Neogene tectonic evolution of the Neuquén Andes western flank (37–39°S). In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35–39°S). Geol Soc Am Spec Paper 407. doi:10.1130/2006.2407(04)Google Scholar
  84. Mibe K, Fujii T, Yasuda A (1999) Control of the location of the volcanic front in island arcs by aqueous fluid connectivity in the mantle wedge. Nature 401:259–262CrossRefGoogle Scholar
  85. Montahei M (2011) Investigation of electrically anisotropic structures employing magnetotelluric data. PhD thesis, University of TehranGoogle Scholar
  86. Müller A, Haak V (2004) 3-D modeling of the deep electrical conductivity of Merapi volcano (Central Java): integrating magnetotellurics, induction vectors and the effects of steep topography. J Volc Geotherm Res 138:205–222CrossRefGoogle Scholar
  87. Muñoz N, Charrier R (1996) Uplift of the western border of the Altiplano on a west-vergent thrust system, Northern Chile. J South Am Earth Sci 9:171–181CrossRefGoogle Scholar
  88. Muñoz J, Troncoso R, Duhart P, Crignola P, Farmer L, Stern CR (2000) The relation of the mid-Tertiary coastal magmatic belt in south-central Chile to the late Oligocene increase in plate convergence rate. Rev Geol Chile 27:177–203CrossRefGoogle Scholar
  89. Myers SC, Beck S, Zandt G, Wallace T (1998) Lithospheric-scale structure across the Bolivian Andes from tomographic images of velocity and attenuation for P and S waves. J Geophys Res 103:21233–21252CrossRefGoogle Scholar
  90. Nakamura K (1977) Volcanoes as possible indicators of tectonic stress orientation (principle and proposal). J Volcan Geotherm Res 2:1–16CrossRefGoogle Scholar
  91. Nesbitt BE (1993) Electrical resistivities of crustal fluids. J Geophys Res 98:4301–4310CrossRefGoogle Scholar
  92. Parada MA, López-Escobar L, Oliveros V, Fuentes F, Morata D, Calderón M, Aguirre L, Féraud G, Espinoza F, Moreno H, Figueroa O, Muñoz J, Troncoso Vásquez R, Stern CR (2007) Andean magmatism. In: Moreno T, Gibbons W (eds) The geology of Chile. Geological Society, London, pp 115–146Google Scholar
  93. Pek J, Verner T (1997) Finite difference modelling of magnetotelluric fields in 2-D anisotropic media. Geophys J Int 128:505–521CrossRefGoogle Scholar
  94. Patro PK, Egbert GD (2008) Regional conductivity structure of Cascadia: preliminary results from 3D inversion of USArray transportable array magnetotelluric data. Geophys Res Lett 35:L20311. doi:10.1029/2008GL035326CrossRefGoogle Scholar
  95. Peacock SM, van Keken PE, Holloway SD, Hacker BR, Abers GA, Fergason RL (2005) Thermal structure of the Costa Rica-Nicaragua subduction zone. Phys Earth Planet Int 149:187–200CrossRefGoogle Scholar
  96. Pizarro D (1993) Los pozos profundos perforados en Costa Rica: aspectos litológicos y bioestratigráficos. Rev Geol Am Central 15:81–85Google Scholar
  97. Protti M, Guendel F, McNally K (1995) Correlation between the age of the subducting Cocos plate and the geometry of the Wadati-Benioff zone under Nicaragua and Costa Rica. Geol Soc Am Spec Paper 295:309–326Google Scholar
  98. Ramos VA, Kay SM (2006) Overview of the tectonic evolution of the southern Central Andes of Mendoza and Neuquén (35°–39°S latitude). In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39°S). Geological Society of America Special Paper, vol 407. doi:10.1130/2006.2407(01)Google Scholar
  99. Ranero CR, Phipps Morgan J, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:367–373CrossRefGoogle Scholar
  100. Reuther CD, Moser E (2007) Orientation and nature of active crustal stresses determined by electromagnetic measurements in the Patagonian segment of the South America Plate. Int J Earth Sci (Geol. Rundschau). doi:10.1007/s00531-007-0273-0Google Scholar
  101. Rietbrock A, Haberland C, Bataille K, Dahm T, Oncken O (2005) Studying the seismogenic coupling zone with a passive seismic array. EOS Trans AGU 86:293CrossRefGoogle Scholar
  102. Ritz M, Bondoux F, Hérail G, Sempere T (1991) A magnetotelluric survey in the northern Bolivian Altiplano. Geophys Res Lett 18:475–478Google Scholar
  103. Roberts JJ, Tyburczy JA (1999) Partial-melt electrical conductivity: Influence of melt composition. J Geophys Res 104:7055–7065CrossRefGoogle Scholar
  104. Rodi W, Mackie RL (2001) Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversions. Geophysics 66:174–187CrossRefGoogle Scholar
  105. Rosenau M, Melnick D, Echtler H (2006) Kinematic constraints on intra-arc shear and strain partitioning in the southern Andes between 38°S and 42°S latitude. Tectonics 25. doi:10.1029/2005TC001943Google Scholar
  106. Rüpke LH, Morgan JP, Hort M, Connolly JAD (2002) Are the regional variations in Central American arc lavas due to differing basaltic versus peridotitic slab sources of fluids? Geology 30:1035–1038CrossRefGoogle Scholar
  107. Rychert CA, Fischer KM, Abers GA, Plank T, Syracuse EM, Protti JM, Gonzalez V, Strauch W (2008) Strong along-arc variations in attenuation in the mantle wedge beneath Costa Rica and Nicaragua. Geochem Geophys Geosyst 9:Q10S10. doi:10.1029/2008GC002040CrossRefGoogle Scholar
  108. Sallarès V, Dañobeitia JJ, Flueh ER (2001) Lithospheric structure of the Costa Rican Isthmus: effects of subduction zone magmatism on an oceanic plateau. J Geophys Res 106:621–643CrossRefGoogle Scholar
  109. Scambelluri M, Philippot P (2001) Deep fluids in subduction zones. Lithos 55:213–227CrossRefGoogle Scholar
  110. Scherwath M, Flueh E, Grevemeyer I, Tilmann F, Contreras-Reyes E, Weinrebe W (2006) Investigating subduction zone processes in Chile. EOS Trans AGU 87:265CrossRefGoogle Scholar
  111. Scheuber E, Bogdanic T, Jensen A, Reutter K-J (1994) Tectonic development fo the north Chilean Andes in relation to plate convergence and magmatism since the Jurassic. In: Reutter K-J, Scheuber E, Wigger P (eds) Tectonics of the Southern Central Andes. Springer, Berlin, pp 121–140Google Scholar
  112. Scheuber E, Mertmann D, Ege H, Silva-González P, Heubeck C, Reutter K-J, Jacobshagen V (2006) Exhumation and basin development related to formation of the Central Andean Plateau, 21°S. In: Oncken O et al. (eds) The Andes: active subduction orogeny, frontiers in earth sciences. Springer, Berlin, pp 459–474Google Scholar
  113. Schilling FR, Trumbull RB, Brasse H, Haberland C, Asch G, Bruhn D, Mai K, Haak V, Giese P, Muñoz M, Ramelow J, Rietbrock A, Ricaldi E, Vietor T (2006) Partial melting in the Central Andean crust: a review of geophysical, petrophysical, and petrologic evidence. In: Oncken O et al. (eds) The Andes: active subduction orogeny, frontiers in earth sciences. Springer, Berlin, pp 459–474Google Scholar
  114. Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379CrossRefGoogle Scholar
  115. Schmucker U (1970) Anomalies of geomagnetic variations in the Southwestern United States. Bull Scripps Institution La Jolla, University of California Press, Los AngelesGoogle Scholar
  116. Schmucker U, Forbush SE, Hartmann O, Giesecke AA, Casaverde M, Castillo J, Salgueiro R, del Pozo S (1966) Electrical conductivity anomaly under the Andes. Carnegie Inst Wash Yearb 65:11–28Google Scholar
  117. Schurr B, Asch G, Rietbrock A, Trumbull R, Haberland C (2003) Complex patterns of fluid and melt transport in the central Andean subduction zone revealed by attenuation tomography. Earth Planet Sci Lett 215:105–119CrossRefGoogle Scholar
  118. Schwalenberg K, Haak V, Rath V (2002) The application of sensitivity studies on a two-dimensional resistivity model from the Central Andes. Geophys J Int 150:673–686CrossRefGoogle Scholar
  119. Schwarz G, Krüger D (1997) Resistivity cross section through the southern central Andes as inferred from magnetotelluric and geomagnetic deep soundings. J Geophys Res 102:11957–11978CrossRefGoogle Scholar
  120. Sempere T, Hérail G, Oller J, Bonhomme MG (1990) Late Oligocene-early Miocene major tectonic crisis and related basins in Bolivia. Geology 18:946–949CrossRefGoogle Scholar
  121. Shaw H (1980) Fracture mechanisms of magma transport from the mantle to the surface. In: Hargraves RB (ed) Physics of magmatic processes. Princeton University Press, Princeton, NJGoogle Scholar
  122. Sick C, Yoon M-K, Rauch K, Buske S, Lüth S, Araneda M, Bataille K, Chong G, Giese P, Krawczyk C, Mechie J, Meyer H, Oncken O, Reichert C, Schmitz M, Shapiro S, Stiller M, Wigger P (2006) Seismic images of accretive and erosive subduction zones from the Chilean margin. In: Oncken O et al. (eds) The Andes: active subduction orogeny, frontiers in earth sciences. Springer, Berlin, pp 147–169Google Scholar
  123. Siemon B (1997) An interpretation technique for superimposed induction anomalies. Geophys J Int 130:73–88CrossRefGoogle Scholar
  124. Simpson F, Bahr K (2005) Practical magnetotellurics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  125. Smith JT (1995) Understanding telluric distortion matrices. Geophys J Int 122:219–226CrossRefGoogle Scholar
  126. Smith JT (1997) Estimating galvanic-distortion magnetic fields in magnetotellurics. Geophys J Int 130:65–72CrossRefGoogle Scholar
  127. Soyer W (2002) Analysis of geomagnetic variations in the Central and Southern Andes. PhD thesis, FU BerlinGoogle Scholar
  128. Soyer W, Brasse H (2001) Investigation of anomalous magnetic field variations in the central Andes of N Chile and SW Bolivia. Geophys Res Lett 28:3023–3026CrossRefGoogle Scholar
  129. Soyer W, Unsworth M (2006) Deep electrical structure of the northern Cascadia (British Columbia, Canada) subduction zone: implications for the distribution of fluids. Geology 34. doi:10.1130/G21951.1Google Scholar
  130. Springer M, Förster A (1998) Heat-flow density across the Central Andean subduction zone. Tectonophysics 291:123–139CrossRefGoogle Scholar
  131. Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Rev Geol Chile 31:161–206CrossRefGoogle Scholar
  132. Sylvester AG (1988) Strike-slip faults. Geol Soc Am Bull 100:1666–1703CrossRefGoogle Scholar
  133. Syracuse EM, Abers GA, Fischer K, MacKenzie L, Rychert C, Protti JM, González, V, Strauch W (2008) Seismic tomography and earthquake locations in the Nicaraguan and Costa Rican upper mantle. Geochem Geophys Geosyst 9:Q07S08. doi:10.1029/2008GC001963CrossRefGoogle Scholar
  134. Tassara A, Götze HJ, Schmidt S, Hackney R (2006) Three-dimensional density model of the Nazca plate and the Andean continental margin. J Geophys Res 111. doi:10.1029/2005JB003976Google Scholar
  135. Tatsumi Y (2003) Some constraints on arc magma genesis. In: Eiler J (ed) Inside the subduction factory. Geophysical Monograph Series, vol 138. AGU, Washington, DC, pp 277–292Google Scholar
  136. Tyburczy JA, Fisler DK (1995) Electrical properties of minerals and melts, mineral physics & crystallography. In: Ahrens TJ Handbook of physical constants, American Geophysical Union, Washington, DC, pp 185–208Google Scholar
  137. Vanyan LL, Berdichevsky MN, Pushkarev PYu, Romanyuk TV (2002) A geoelectric model of the Cascadia subduction zone. Izvestiya Phys Solid Earth 38:816–845Google Scholar
  138. Varentsov IvM, Golubev NG, Gordienko VV, Sokolova EYu (1996) Study of deep geoelectrical structure along EMSLAB Lincoln-Line. Izvestiya Phys Solid Earth 32:375–393Google Scholar
  139. Völker D, Wiedicke M, Ladage S, Gaedicke C, Reichert C, Rauch K, Kramer W, Heubeck C (2006) Latitudinal variation in sedimentary processes in the peru-Chile trench off Central Chile. In: Oncken O et al. (eds) The Andes: active subduction orogeny, frontiers in earth sciences. Springer, Berlin, pp 193–216Google Scholar
  140. von Huene R, Weinrebe W, Heeren F (1999) Subduction erosion along the North Chile margin. Geodynamics 27:345–358CrossRefGoogle Scholar
  141. Walther CHE, Flueh ER, Ranero CR, von Huene R, Strauch W (2000) Crustal structure across the Pacific margin of Nicaragua: evidence for ophiolitic basement and a shallow mantle sliver. Geophys J Int 141:759–777CrossRefGoogle Scholar
  142. Wannamaker PE (1999) Affordable Magnetotellurics: interpretation in Natural Environments. In: Oristaglio M, Spies B (eds) Three-dimensional electromagnetics. Soc. Expl. Geophys., Tulsa, pp 349–374CrossRefGoogle Scholar
  143. Wannamaker PE, Booker JR, Jones AG, Chave AD, Filloux JH, Waff HS, Law LK (1989) Resistivity cross-section through the Juan de Fuca subduction system and its tectonic implications. J Geophys Res 94:14127–14144CrossRefGoogle Scholar
  144. Wannamaker PE, Caldwell TG, Jiracek GR, Maris V, Hill GJ, Ogawa Y, Bibby HM, Bennie SL, Heise W (2009) Fluid and deformation regime of an advancing subduction system at Marlborough. New Zealand. Nature 460. doi:10.1038/nature08204Google Scholar
  145. Weidelt P (1999) 3-D Conductivity models: implications of electrical anisotropy. In: Oristaglio M, Spies B (eds) Three-dimensional electromagnetics. Society of Exploration Geophysicists, Tulsa, pp 119–137CrossRefGoogle Scholar
  146. Wessel P, Smith WHF (1998) New, improved version of the Generic Mapping Tools released. EOS Trans AGU 79:579CrossRefGoogle Scholar
  147. Whitman D, Isacks BL, Kay SM (1996) Lithospheric structure and along-strike segmentation of the Central Andean Plateau: seismic Q, magmatism, flexure, topography and tectonics. Tectonophysics 259:29–40CrossRefGoogle Scholar
  148. Wiese H (1962) Geomagnetische Tiefentellurik Teil II: Die Streichrichtung der Untergrundstrukturen des elektrischen Widerstandes, erschlossen aus geomagnetischen Variationen. Pageoph 52:83–103CrossRefGoogle Scholar
  149. Wigger P, Schmitz M, Araneda M, Asch G, Baldzuhn S, Giese P, Heinsohn W-D, Martínez E, Ricaldi E, Röwer P, Viramonte J (1994) Variation of the crustal structure of the southern Central Andes deduced from seismic refraction investigations. In: Reutter K-J, Scheuber E, Wigger P (eds) Tectonics of the Southern Central Andes. Springer, Berlin, pp 23–48Google Scholar
  150. Wörner G, Hammerschmidt K, Henjes-Kunst F, Lezaun J, Wilke H (2000) Geochronology (40Ar-39Ar-, K-Ar-, and He-exposure-ages) of Cenozoic magmatic rocks from Northern Chile (18°-22°S): implications for magmatism and tectonic evolution of the central Andes. Rev Geol Chile 27:205–240Google Scholar
  151. Wörner G, Uhlig D, Kohler I, Seyfried H (2002) Evolution of the West Andean Escarpment at 18°S (N. Chile) during the last 25 Ma: uplift, erosion and collapse through time. Tectonophysics 345:183–198CrossRefGoogle Scholar
  152. Yuan X, Asch G, Bataille K, Bock G, Bohm M, Echtler H, Kind R, Oncken O, Wölbern I (2006) Deep seismic images of the southern Andes. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39°S lat), Geological Society of American, Special paper. doi:10.1130/2006.2407(03)Google Scholar
  153. Yuan X, Sobolev SV, Kind R (2002) Moho topography in the central Andes and its geodynamic implications. Earth Planet Sci Lett 199:389–402CrossRefGoogle Scholar
  154. Zhdanov MS (2009) Geophysical Electromagnetic theory and methods. Methods in geochemistry and geophysics, 43. Elsevier, 868ppGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Freie Universität Berlin, Fachrichtung GeophysikBerlinGermany

Personalised recommendations