Computational Modelling and Advanced Simulations pp 33-48

Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 24) | Cite as

Mechanics of Viscoelastic Plates Made of FGMs



Considering the viscoelastic behavior of polymer foams a new plate theory based on the direct approach is introduced and applied to plates composed of functionally graded materials (FGM). The governing two-dimensional equations are formulated for a deformable surface, the viscoelastic effective stiffness parameters are identified assuming linear viscoelastic material behavior. The material properties are changing in the thickness direction. Solving some problems of the global structural analysis it will be demonstrated that in some cases the results significantly differ from the results based on the Kirchhoff-type theory. The aim of this paper is to extend the results of the analysis given in (ZAMM 88:332–341, 2008; Acta Mech 204:137–154, 2009; Key Eng Mater 399:63–70, 2009) related to the case of general linear viscoelastic behaviour and to discuss how the effective viscoelastic properties reflect the properties in the thickness direction.


Plates Viscoelasticity Functionally graded material Foam 


  1. 1.
    Altenbach, H., Eremeyev, V.A.: Analysis of the viscoelastic behavior of plates made of functionally graded materials. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM). 88, 332–341 (2008)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Altenbach, H., Eremeyev, V.A.: On the bending of viscoelastic plates made of polymer foams. Acta Mech. 204, 137–154 (2009)MATHCrossRefGoogle Scholar
  3. 3.
    Altenbach, H., Eremeyev, V.A.: On the time dependent behaviour of FGM plates. Key Eng. Mater. 399, 63–70 (2009)CrossRefGoogle Scholar
  4. 4.
    Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties, 2nd edn, Cambridge Solid State Science Series. Cambridge University Press, Cambridge (1997)Google Scholar
  5. 5.
    Mills, N.: Polymer Foams Handbook Engineering and Biomechanics Applications and Design. Guide Butterworth-Heinemann, Boston, MA (2007)Google Scholar
  6. 6.
    Altenbach, H.: Definition of elastic moduli for plates made from thickness-uneven anisotropic material. Mech. Solids 22, 135–141 (1987)Google Scholar
  7. 7.
    Altenbach, H.: An alternative determination of transverse shear stiffnesses for sandwich and laminated plates. Int. J. Solids Struct. 37, 3503–3520 (2000)MATHCrossRefGoogle Scholar
  8. 8.
    Altenbach, H.: On the determination of transverse shear stiffnesses of orthotropic plates. ZAMP. 51, 629–649 (2000)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Altenbach, H., Eremeyev, V.A.: Direct approach based analysis of plates composed of functionally graded materials. Arch. Appl. Mech. 78, 775–794 (2008)MATHCrossRefGoogle Scholar
  10. 10.
    Altenbach, H., Eremeyev, V.A.: Eigen-vibrations of plates made of functionally graded material. CMC: Comput. Mater. Continua 9, 153–178 (2009)Google Scholar
  11. 11.
    Altenbach, H.: Eine direkt formulierte lineare Theorie für viskoelasische Platten und Schalen. Ingenieur-Arch. 58, 215–228 (1988)MATHCrossRefGoogle Scholar
  12. 12.
    Praveen, G.N., Reddy, J.N.: Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. Int. J. Solids Struct. 35, 4457–4476 (1998)MATHCrossRefGoogle Scholar
  13. 13.
    He, X.Q., Ng, T.Y., Sivashanker, S., Liew, K.M.: Active control of FGM plates with integrated piezoelectric sensors and actuators. Int. J. Solids Struct. 38, 1641–1655 (2001)MATHCrossRefGoogle Scholar
  14. 14.
    Yang, J., Shen, H.S.: Dynamic response of initially stressed functionally graded rectangular thin plates. Compos. Struct. 54, 497–508 (2001)CrossRefGoogle Scholar
  15. 15.
    Javaheri, R., Eslami, M.R.: Thermal buckling of functionally graded plates. AIAA J. 40, 162–169 (2002)CrossRefGoogle Scholar
  16. 16.
    Arciniega, R., Reddy, J.: Large deformation analysis of functionally graded shells. Int. J. Solids Struct. 44, 2036–2052 (2007)MATHCrossRefGoogle Scholar
  17. 17.
    Batra, R.C.: Higher order shear and normal deformable theory for functionally graded incompressible linear elastic plates. Thin-Walled Struct. 45, 974–982 (2007)CrossRefGoogle Scholar
  18. 18.
    Zhang, N.-H., Wang, M.-L.: Thermoviscoelastic deformations of functionally graded thin plates. Eur. J. Mech. A-Solids 26, 872–886 (2007)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lakes, R.S.: The time-dependent Poisson’s ratio of viscoelastic materials can increase or decrease. Cell. Polym. 11, 466–469 (1992)Google Scholar
  20. 20.
    Lakes, R.S., Wineman, A.: On Poisson’s ratio in linearly viscoelastic solids. J Elast. 85, 45–63 (2006)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Christensen, R.M.: Theory of Viscoelasticity An Introduction. Academic Press, New York (1971)Google Scholar
  22. 22.
    Drozdov, A.D.: Finite Elasticity and Viscoelasticity. World Scientific, Singapore (1996)MATHGoogle Scholar
  23. 23.
    Tschoegl, N.W.: The Phenomenological Theory of Linear Viscoelastic Behavior. An Introduction. Springer, Berlin (1989)MATHGoogle Scholar
  24. 24.
    Brinson, H.F., Brinson, C.L.: Polymer Engineering Science and Viscoelasticity. An Introduction. Springer, New York, NY (2008)CrossRefGoogle Scholar
  25. 25.
    Riande, E., et al. (eds.): Polymer Viscoelasticity: Stress and Strain in Practice. Marcel Dekker, New York, NY (2000)Google Scholar
  26. 26.
    Timoshenko, S.P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Phil. Mag. Ser. 41, 744–746 (1921)CrossRefGoogle Scholar
  27. 27.
    Reissner, E.: On the theory of bending of elastic plates. J. Math. Phys. 23, 184–194 (1944)MATHMathSciNetGoogle Scholar
  28. 28.
    Reissner, E.: On bending of elastic plates. Q. Appl. Math. 5, 55–68 (1947)MATHMathSciNetGoogle Scholar
  29. 29.
    Mindlin, R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates. Trans. ASME J. Appl. Mech. 18, 31–38 (1951)MATHGoogle Scholar
  30. 30.
    Reissner, E.: Reflection on the theory of elastic plates. Appl. Mech. Rev. 38, 1453–1464 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Lehrstuhl für Technische Mechanik, Zentrum für IngenieurwissenschaftenMartin-Luther-Universität Halle-WittenbergHalle (Saale)Germany
  2. 2.South Scientific Center of RASci South Federal UniversityRostov on DonRussia

Personalised recommendations