Spatial Resilience, Landscape Experiments, and Fragmentation

Chapter

Abstract

The majority of theoretical development and the testing of principles relating to the influence of spatial variation on processes in social-ecological systems has been either on paper or in silico (which is to say, through analytical mathematics and/or the use of computer-based models). This chapter provides a counterpoint to mathematical and model-oriented approaches by discussing rigorous empirical studies of spatial effects in ecosystems. Its primary goal is to offer an overview of the body of work in ecology that uses different forms of experimentation to test ideas about the relevance of space for resilience (as discussed in the previous four chapters). It also offers an introduction to a set of concepts that provide important background for Chapter 9.

Keywords

Adaptive Management Fragmentation Experiment Local Extirpation Translocation Experiment Landscape Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amarasekare, P. (2000). Coexistence of competing parasitoids on a patchily distributed host: Local vs. spatial mechanisms. Ecology, 81, 1286–1296.CrossRefGoogle Scholar
  2. Belisle, M. (2005). Measuring landscape connectivity: The challenge of behavioral landscape ecology. Ecology, 86, 1988–1995.CrossRefGoogle Scholar
  3. Bernhardt, E. S., Likens, G. E. Hall, R. O. Buso, D. C. Fisher, S. G., & Burton, T. M. et al. (2005). Can’t see the forest for the stream? – In-stream processing and terrestrial nitrogen exports. Bioscience, 55, 219–230.CrossRefGoogle Scholar
  4. Cadotte, M. W., & Fukami, T. (2005). Dispersal, spatial scale, and species diversity in a hierarchically structured experimental landscape. Ecology Letters, 8, 548–557.PubMedCrossRefGoogle Scholar
  5. Carpenter, S. R. (1996). Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology, 77, 677–680.CrossRefGoogle Scholar
  6. Carpenter, S. R. (2003). Regime shifts in lake ecosystems: Patterns and variation. In O. Kinne (Ed.), Excellence in ecology series (Vol. 15). Germany: Ecology Institute, Oldendorf/Luhe.Google Scholar
  7. Carpenter, S. R., Dahm, C. N. McKnight, D. M. Naiman, R. J. Postel, S. L., & Running, S.W. et al. (2001). Trophic cascades, nutrients, and lake productivity: Whole-lake experiments. Ecological Monographs, 71, 163–186.CrossRefGoogle Scholar
  8. Child, M. F., Cumming, G. S., & Amano, T. (2009). Assessing the broad-scale impact of agriculturally transformed and protected area landscapes on avian taxonomic and functional richness. Biological Conservation, 142, 2593–2601.CrossRefGoogle Scholar
  9. Cumming, D. H. M., Fenton, M. B., Rautenbach, I. L., Taylor, R. D., Cumming, G. S., & Cumming, M. S., et al. (1997). Elephants, woodlands and biodiversity in southern Africa. South African Journal of Science, 93, 231–236.Google Scholar
  10. Cumming, G. S., & Child, M. F. (2009). Contrasting spatial patterns of taxonomic and functional richness offer insights into potential loss of ecosystem services. Philosophical Transactions of the Royal Society B-Biological Sciences, 364, 1683–1692.CrossRefGoogle Scholar
  11. Debinski, D. M., & Holt, R. D. (2000). A survey and overview of habitat fragmentation experiments. Conservation Biology, 14, 342–355.CrossRefGoogle Scholar
  12. Dobson, A., Lodge, D., Alder, J., Cumming, G.S., Keymer, J., & Mcglade, J. et al. (2006). Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology, 87, 1915–1924.PubMedCrossRefGoogle Scholar
  13. Fisher, R. A. (1926). The arrangement of field experiments. Journal of the Ministry of Agriculture of Great Britain, 33, 503–513.Google Scholar
  14. Friedenberg, N. A. (2003). Experimental evolution of dispersal in spatiotemporally variable microcosms. Ecology Letters, 6, 953–959.CrossRefGoogle Scholar
  15. Hellmann, J., Pelini, S. L., Prior, K. M., & Dzurisin, J. D. K. (2008). The response of two butterfly species to climatic variation at the edge of their range and the implications for poleward range shifts. Oecologia, 157, 583–592.PubMedCrossRefGoogle Scholar
  16. Holling, C. S. (Ed.). (1978). Adaptive environmental assessment and management. London: Wiley.Google Scholar
  17. Holling, C. S. (1992). Cross-scale morphology, geometry, and dynamics of ecosystems. Ecological Monographs, 62, 447–502.CrossRefGoogle Scholar
  18. Holmgren, M., & Scheffer, M. (2001). El Niño as a window of opportunity for the restoration of degraded arid ecosystems. Ecosystems, 4, 151–159.CrossRefGoogle Scholar
  19. Holt, R. D., Robinson, G. R., & Gaines, M. S. (1995). Vegetation dynamics in an experimentally fragmented landscape. Ecology, 76, 1610–1624.CrossRefGoogle Scholar
  20. Houlahan, J. E., Currie D., Cottenie K., Ernest S., Findlay C., & Fuhldorf, S., et al. (2007). Compensatory dynamics are rare in natural ecological communities. Proceedings of the National Academy of Sciences of the United States of America, 104, 3273–3277.PubMedCrossRefGoogle Scholar
  21. Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton: Princeton University Press.Google Scholar
  22. Huston, M. A. (1997). Hidden treatments in ecological experiments: Re-evaluating the ecosystem function of biodiversity. Oecologia, 110, 449–460.CrossRefGoogle Scholar
  23. Jessup, C. M., Kassen, R., Forde, S.E., Kerr, B., Buckling, A., & Rainey, P.B., et al. (2004). Big questions, small worlds: Microbial model systems in ecology. Trends in Ecology and Evolution, 19, 189–197.PubMedCrossRefGoogle Scholar
  24. Kneitel, J. M., & Chase, J. (2004). Trade-offs in community ecology: Linking spatial scales and species coexistence. Ecology Letters, 7, 69–80.CrossRefGoogle Scholar
  25. Kuussaari, M., Bommarco, R. Heikkinen, R. K. Helm, A. Krauss, J., & Lindborg, R. et al. (2009). Extinction debt: A challenge for biodiversity conservation. Trends in Ecology & Evolution, 24, 564–571.CrossRefGoogle Scholar
  26. Likens, G. E. (2004). Some perspectives on long-term biogeochemical research from the Hubbard Brook ecosystem study. Ecology, 85, 2355–2362.CrossRefGoogle Scholar
  27. Likens, G. E., Bormann, F. H., Johnson, N. M., Fisher, D. W., & Pierce, R. S. (1970). Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed-ecosystem. Ecological Monographs, 40, 23–47.CrossRefGoogle Scholar
  28. Likens, G. E., Bormann, F. H., Pierce, R. S., & Reiners, W. A. (1978). Recovery of a deforested ecosystem. Science, 199, 492–496.PubMedCrossRefGoogle Scholar
  29. Lindenmayer, D. B., & Fischer, J. (2006). Habitat fragmentation and landscape change. Washington, DC: Island Press.Google Scholar
  30. Monserud, R. A. (2002). Large-scale management experiments in the moist maritime forests of the Pacific Northwest. Landscape and Urban Planning, 59, 159–180.CrossRefGoogle Scholar
  31. Prugh, L. R., Hodges, K. E., Sinclair, A. R. E., & Brashares, J. S. (2008). Effect of habitat area and isolation on fragmented animal populations. Proceedings of the National Academy of Sciences, 105, 20770–20775.CrossRefGoogle Scholar
  32. Richardson-Kageler, S. J. (2003). Large mammalian herbivores and woody plant species diversity in Zimbabwe. Biodiversity and Conservation, 12, 703–715.CrossRefGoogle Scholar
  33. Ripple, W. J., & Beschta, R. L. (2007). Hardwood tree decline following large carnivore loss on the Great Plains, USA. Frontiers in Ecology and the Environment, 5, 241–246.CrossRefGoogle Scholar
  34. Schindler, D. W., Hecky R. E. Findlay D. L. Stainton, M. P. Parker, B. R., & Paterson, M. J. et al. (2008). Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences of the United States of America, 105, 11254–11258.PubMedCrossRefGoogle Scholar
  35. Staver, A. C., Bond, W. J., Stock, W. D., van Rensburg, S. J., & Waldram, M. S. (2009). Browsing and fire interact to suppress tree density in an African savanna. Ecological Applications, 19, 1909–1919.PubMedCrossRefGoogle Scholar
  36. Suding, K. N., Collins, S. L. Gough, L. Clark, C. Cleland, E. E., & Gross, K. L. et al. (2005). Functional-and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences, 102, 4387–4392.CrossRefGoogle Scholar
  37. Terborgh, J., Lopez, L., Nuñez, P. Rao, M. Shahabuddin, G., & Orihuela, G. et al. (2001). Ecological meltdown in predator-free forest fragments. Science, 294, 1923–1926.PubMedCrossRefGoogle Scholar
  38. Terborgh, J., Lopez, L., & Tello, J. (1997). Bird communities in transition: The Lago Guri islands. Ecology, 78, 1494–1501.CrossRefGoogle Scholar
  39. Tilman, D. (1994). Competition and biodiversity in spatially structured habitats. Ecology, 75, 2–16.CrossRefGoogle Scholar
  40. Tilman, D. (1999). The ecological consequences of changes in biodiversity: A search for general principles. Ecology, 80, 1455–1474.Google Scholar
  41. Tilman, D., Reich, P. B., & Knops, J. M. H. (1996). Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 441, 629–632.CrossRefGoogle Scholar
  42. Tilman, D., Reich, P. B., Knops, J., Wedin, D., Mielke, T., & Lehman, C. (2001). Diversity and productivity in a long-term grassland experiment. Science, 294, 843–845.PubMedCrossRefGoogle Scholar
  43. Todd, S. W., & Hoffman, M. T. (2009). A fence line in time demonstrates grazing-induced vegetation shifts and dynamics in the semiarid Succulent Karoo. Ecological Applications, 19, 1897–1908.PubMedCrossRefGoogle Scholar
  44. Walters, C. (1997). Challenges in adaptive management of riparian and coastal ecosystems. Conservation Ecology, 1, 1 [online]. Available from, http://www.consecol.org/vol1/iss2/art1
  45. Walters, C. J., & Holling, C. S. (1990). Large-scale management experiments and learning by doing. Ecology, 71, 2060–2068.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Percy FitzPatrick Institute, DST/NRF Centre of Excellence, University of Cape TownCape TownSouth Africa

Personalised recommendations