Equivalent thermo-mechanical parameters for perfect crystals

Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 27)

Abstract

Thermo-elastic behavior of perfect single crystal is considered. The crystal is represented as a set of interacting particles (atoms). The approach for determination of equivalent continuum values for the discrete system is proposed. Averaging of equations of particles’ motion and long wave approximation are used in order to make link between the discrete system and equivalent continuum. Basic balance equations for equivalent continuum are derived from microscopic equations. Macroscopic values such as Piola and Cauchy stress tensors and heat flux are represented via microscopic parameters. Connection between the heat flux and temperature is discussed. Equation of state in Mie-Gruneisen form connecting Cauchy stress tensor with deformation gradient and thermal energy is obtained from microscopic considerations.

Keywords

Discrete System Spatial Average Cauchy Stress Perfect Crystal Energy Balance Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.P. Allen, D.J. Tildesley. Computer Simulation of Liquids. Clarendon Press, Oxford. (1987). 385 p. MATHGoogle Scholar
  2. 2.
    M. Born, K. Huang. Dynamical theory of crystal lattices. Oxford: Clarendon Press, (1988). MATHGoogle Scholar
  3. 3.
    B.L. Glushak, V.F. Kuropatenko, S.A. Novikov. Issledovanie prochnosti materialov pri dinamicheskix nagruzkax. Nauka, (1992), p. 295. Google Scholar
  4. 4.
    R.J. Hardy. Formulae for determining local properties in molecular-dynamics simulations: Shock waves. Journal of Chemical Physics 76, pp. 622–628, (1982). CrossRefGoogle Scholar
  5. 5.
    W.G. Hoover. Smooth particle applied mechnics — The state of the art. Advanced series in nonlinear dynamics, Vol. 25, World Scientific, (2006). 300 p. CrossRefGoogle Scholar
  6. 6.
    V.I. Kondaurov, V.E. Fortov. Foundations of thermo-mechanics of condensed matters. M.: Izd. MFTI, (2002). 336 p. (in Russian). Google Scholar
  7. 7.
    A.M. Krivtsov. Deformation and fracture of bodies with microstructure. M.: Fizmatlit, (2007). 302 p. Google Scholar
  8. 8.
    A.M. Krivtsov. From nonlinear oscillations to equation of state in simple discrete systems. Chaos, Solitons & Fractals 17, 79, (2003). MATHCrossRefGoogle Scholar
  9. 9.
    A.M. Krivtsov, V.A. Kuzkin. Derivation of equations of state for perfect crystals with simple structure. Mechanics of Solids, (2010) (paper in press). Google Scholar
  10. 10.
    I.A. Kunin. Theory of elastic media with microstrucrutes. Springer-Verlag, (1982). Google Scholar
  11. 11.
    V.A. Kuzkin. Equivalent thermo-mechanical parameters for perfect crystals with arbitrary multibody potential. Proc. of XXXVII Summer School-Conference “Advanced Problems in Mechanic”. St. Petersburg. pp. 421–431, (2009). Google Scholar
  12. 12.
    V.A. Kuzkin, A.M. Krivtsov. Thermo-mechanical effects in perfect crystals with arbitrary multibody potential. Proc. of Joint U.S.-Russia conference on Advances in Material Science. Prague. (2009). pp. 30–34. Google Scholar
  13. 13.
    G. Leibfrid. Microscopic Theory of Mechanical and Thermal Properties of Crystals, Moscow, GIFML, (1962), 312 p. Google Scholar
  14. 14.
    A.I. Lurie. Nonlinear theory of elasticity. North-Holland. Amsterdam. (1990). 617 p. MATHGoogle Scholar
  15. 15.
    V.A. Palmov. Vibrations of elasto-palstic bodies. Springer-Verlag, Berlin (1998). Google Scholar
  16. 16.
    R.E. Rudd, J.Q. Broughton. Coarse-grained molecular dynamics: Nonlinear finite elements and finite temperature. Phys. Rev. B 72, 144104, (2005). CrossRefGoogle Scholar
  17. 17.
    G.J. Wagner, W.K. Liu. Coupling of atomistic and continuum simulations using a bridging scale decomposition. J. Comput. Phys. 190, pp. 249—274, (2003). MATHCrossRefGoogle Scholar
  18. 18.
    E.B. Webb, J.A. Zimmerman, S.C. Seel. Reconsideration of Continuum Thermomechanical Quantities in Atomic Scale Simulations. Mathematics and Mechanics of Solids 13, (2008), pp. 221–266. MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Y.B. Zeldovich, J.P. Raiser. Physics of shock waves and high temperature hydrodynamic events. Academic Press, New York, (1967), p. 785. Google Scholar
  20. 20.
    M. Zhou. Thermomechanical contimuum representation of atomistic deformation at arbitrary size scales. Proc. R. Soc. A 461 (2005) pp. 3437–3472. MATHCrossRefGoogle Scholar
  21. 21.
    J.A. Zimmerman, E.B. Webb, J.J. Hoyt, R.E. Jones, P.A. Klein, D.J. Bammann. Calculation of stress in atomistic simulation. Modelling Simul. Mater. Sci. Eng. 12 (2004) pp. 319–332. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute for Problems in Mechanical Engineering RASSt. PetersburgRussia

Personalised recommendations