Transient Receptor Potential Genes and Human Inherited Disease

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 704)

Abstract

Transient receptor potential (TRP) genes have been implicated in a wide array of human disorders, from cancers to bipolar disorder. The extraordinary range of diseases in whose pathogenesis they may play a role exemplifies the equally broad range of functions of the TRP proteins. TRP proteins primarily form homomeric or heteromeric channels in the cell membrane but there may also be intracellular non-channel functions for TRPs. Mutations in TRP genes have been causally associated with at least 12 hereditary human diseases. This chapter aims to summarise those associations and focuses on the following diseases: focal segmental glomerulosclerosis; polycystic kidney disease; brachyolmia; spondylometaphyseal dysplasia; metatropic dysplasia; hereditary motor and sensory neuropathy; spinal muscular atrophy; congenital stationary night blindness; progressive familial heart block; hypomagnesaemia; and mucolipidosis. There appears to be very little to connect these disorders except the involvement of a TRP gene but by understanding more about the genes involved in diseases, we understand more about disease biology and about the function of those genes causally associated. This feedback loop of information will serve to enhance our knowledge of disease and elucidate basic gene and protein function of the TRPs.

Keywords

TRP genes Inherited human disease Mutations 

References

  1. 1.
    Huang CL (2004) The transient receptor potential superfamily of ion channels. J Am Soc Nephrol 15:1690–1699CrossRefPubMedGoogle Scholar
  2. 2.
    Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005:re3Google Scholar
  3. 3.
    Bush EW, Hood DB, Papst PJ, Chapo JA, Minobe W, Bristow MR, Olson EN, McKinsey TA (2006) Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem 281:33487–33496CrossRefPubMedGoogle Scholar
  4. 4.
    Yu Y, Fantozzi I, Remillard CV, Landsberg JW, Kunichika N, Platoshyn O, Tigno DD, Thistlethwaite PA, Rubin LJ, Yuan JX (2004) Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc Natl Acad Sci USA 101:13861–13866CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Yu Y, Keller SH, Remillard CV, Safrina O, Nicholson A, Zhang SL, Jiang W, Vangala N, Landsberg JW, Wang JY, Thistlethwaite PA, Channick RN, Robbins IM, Loyd JE, Ghofrani HA, Grimminger F, Schermuly RT, Cahalan MD, Rubin LJ, Yuan JX (2009) A functional single-nucleotide polymorphism in the TRPC6 gene promoter associated with idiopathic pulmonary arterial hypertension. Circulation 119:2313–2322CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Everett KV, Chioza BA, Georgoula C, Reece A, Gardiner RM, Chung EM (2009) Infantile hypertrophic pyloric stenosis: evaluation of three positional candidate genes, TRPC1, TRPC5 and TRPC6, by association analysis and re-sequencing. Hum Genetics Vol 126, number 6, pp 819–831 (2009)CrossRefGoogle Scholar
  7. 7.
    Winn MP, Conlon PJ, Lynn KL, Howell DN, Slotterbeck BD, Smith AH, Graham FL, Bembe M, Quarles LD, Pericak-Vance MA, Vance JM (1999) Linkage of a gene causing familial focal segmental glomerulosclerosis to chromosome 11 and further evidence of genetic heterogeneity. Genomics 58:113–120CrossRefPubMedGoogle Scholar
  8. 8.
    Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, vila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37:739–744CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:1801–1804CrossRefPubMedGoogle Scholar
  10. 10.
    Heeringa SF, Moller CC, Du J, Yue L, Hinkes B, Chernin G, Vlangos CN, Hoyer PF, Reiser J, Hildebrandt F (2009) A novel TRPC6 mutation that causes childhood FSGS. PLoS One 4:e7771CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Zhu B, Chen N, Wang ZH, Pan XX, Ren H, Zhang W, Wang WM (2009) Identification and functional analysis of a novel TRPC6 mutation associated with late onset familial focal segmental glomerulosclerosis in Chinese patients. Mutat Res 664:84–90CrossRefPubMedGoogle Scholar
  12. 12.
    Schlondorff J, Del CD, Carrasquillo R, Lacey V, Pollak MR (2009) TRPC6 mutations associated with focal segmental glomerulosclerosis cause constitutive activation of NFAT-dependent transcription. Am J Physiol Cell Physiol 296:C558–C569CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Xu H, Zhao H, Tian W, Yoshida K, Roullet JB, Cohen DM (2003) Regulation of a transient receptor potential (TRP) channel by tyrosine phosphorylation. SRC family kinase-dependent tyrosine phosphorylation of TRPV4 on TYR-253 mediates its response to hypotonic stress. J Biol Chem 278:11520–11527CrossRefPubMedGoogle Scholar
  14. 14.
    Chen X, essandri-Haber N, Levine JD (2007) Marked attenuation of inflammatory mediator-induced C-fiber sensitization for mechanical and hypotonic stimuli in TRPV4–/– mice. Mol Pain 3:31CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Loukin SH, Su Z, Kung C (2009) Hypotonic shocks activate rat TRPV4 in yeast in the absence of polyunsaturated fatty acids. FEBS Lett 583:754–758CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Rock MJ, Prenen J, Funari VA, Funari TL, Merriman B, Nelson SF, Lachman RS, Wilcox WR, Reyno S, Quadrelli R, Vaglio A, Owsianik G, Janssens A, Voets T, Ikegawa S, Nagai T, Rimoin DL, Nilius B, Cohn DH (2008) Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat Genet 40:999–1003CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Muramatsu S, Wakabayashi M, Ohno T, Amano K, Ooishi R, Sugahara T, Shiojiri S, Tashiro K, Suzuki Y, Nishimura R, Kuhara S, Sugano S, Yoneda T, Matsuda A (2007) Functional gene screening system identified TRPV4 as a regulator of chondrogenic differentiation. J Biol Chem 282:32158–32167CrossRefPubMedGoogle Scholar
  18. 18.
    Wang Y, Fu X, Gaiser S, Kottgen M, Kramer-Zucker A, Walz G, Wegierski T (2007) OS-9 regulates the transit and polyubiquitination of TRPV4 in the endoplasmic reticulum. J Biol Chem 282:36561–36570CrossRefPubMedGoogle Scholar
  19. 19.
    Krakow D, Vriens J, Camacho N, Luong P, Deixler H, Funari TL, Bacino CA, Irons MB, Holm IA, Sadler L, Okenfuss EB, Janssens A, Voets T, Rimoin DL, Lachman RS, Nilius B, Cohn DH (2009) Mutations in the gene encoding the calcium-permeable ion channel TRPV4 produce spondylometaphyseal dysplasia, Kozlowski type and metatropic dysplasia. Am J Hum Genet 84:307–315CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Beck M, Roubicek M, Rogers JG, Naumoff P, Spranger J (1983) Heterogeneity of metatropic dysplasia. Eur J Pediatr 140:231–237CrossRefPubMedGoogle Scholar
  21. 21.
    Genevieve D, Le MM, Feingold J, Munnich A, Maroteaux P, Cormier-Daire V (2008) Revisiting metatropic dysplasia: presentation of a series of 19 novel patients and review of the literature. Am J Med Genet A 146A:992–996CrossRefPubMedGoogle Scholar
  22. 22.
    Kannu P, Aftimos S, Mayne V, Donnan L, Savarirayan R (2007) Metatropic dysplasia: clinical and radiographic findings in 11 patients demonstrating long-term natural history. Am J Med Genet A 143A:2512–2522CrossRefPubMedGoogle Scholar
  23. 23.
    Camacho N, Krakow D, Johnykutty S, Katzman PJ, Pepkowitz S, Vriens J, Nilius B, Boyce BF, Cohn DH (2010) Dominant TRPV4 mutations in nonlethal and lethal metatropic dysplasia. Am J Med Genet A 152A:1169–1177CrossRefPubMedGoogle Scholar
  24. 24.
    Auer-Grumbach M, Olschewski A, Papic L, Kremer H, McEntagart ME, Uhrig S, Fischer C, Frohlich E, Balint Z, Tang B, Strohmaier H, Lochmuller H, Schlotter-Weigel B, Senderek J, Krebs A, Dick KJ, Petty R, Longman C, Anderson NE, Padberg GW, Schelhaas HJ, van Ravenswaaij-Arts CM, Pieber TR, Crosby AH, Guelly C (2010) Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nat Genet 42:160–164CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Deng HX, Klein CJ, Yan J, Shi Y, Wu Y, Fecto F, Yau HJ, Yang Y, Zhai H, Siddique N, Hedley-Whyte ET, Delong R, Martina M, Dyck PJ, Siddique T (2010) Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet 42:165–169CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Landoure G, Zdebik AA, Martinez TL, Burnett BG, Stanescu HC, Inada H, Shi Y, Taye AA, Kong L, Munns CH, Choo SS, Phelps CB, Paudel R, Houlden H, Ludlow CL, Caterina MJ, Gaudet R, Kleta R, Fischbeck KH, Sumner CJ (2010) Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet 42:170–174CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Hellwig N, Albrecht N, Harteneck C, Schultz G, Schaefer M (2005) Homo- and heteromeric assembly of TRPV channel subunits. J Cell Sci 118:917–928CrossRefPubMedGoogle Scholar
  28. 28.
    Arniges M, Fernandez-Fernandez JM, Albrecht N, Schaefer M, Valverde MA (2006) Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J Biol Chem 281:1580–1586CrossRefPubMedGoogle Scholar
  29. 29.
    Cuajungco MP, Grimm C, Oshima K, D’hoedt D, Nilius B, Mensenkamp AR, Bindels RJ, Plomann M, Heller S (2006) PACSINs bind to the TRPV4 cation channel. PACSIN 3 modulates the subcellular localization of TRPV4. J Biol Chem 281:18753–18762CrossRefPubMedGoogle Scholar
  30. 30.
    Duncan LM, Deeds J, Hunter J, Shao J, Holmgren LM, Woolf EA, Tepper RI, Shyjan AW (1998) Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res 58:1515–1520PubMedGoogle Scholar
  31. 31.
    Bellone RR, Brooks SA, Sandmeyer L, Murphy BA, Forsyth G, Archer S, Bailey E, Grahn B (2008) Differential gene expression of TRPM1, the potential cause of congenital stationary night blindness and coat spotting patterns (LP) in the Appaloosa horse (Equus caballus). Genetics 179:1861–1870CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Bellone RR, Forsyth G, Leeb T, Archer S, Sigurdsson S, Imsland F, Mauceli E, Engensteiner M, Bailey E, Sandmeyer L, Grahn B, Lindblad-Toh K, Wade CM (2010) Fine-mapping and mutation analysis of TRPM1: a candidate gene for leopard complex (LP) spotting and congenital stationary night blindness in horses. Brief Funct Genomics 9:193–207CrossRefPubMedGoogle Scholar
  33. 33.
    Li Z, Sergouniotis PI, Michaelides M, Mackay DS, Wright GA, Devery S, Moore AT, Holder GE, Robson AG, Webster AR (2009) Recessive mutations of the gene TRPM1 abrogate ON bipolar cell function and cause complete congenital stationary night blindness in humans. Am J Hum Genet 85:711–719CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Audo I, Kohl S, Leroy BP, Munier FL, Guillonneau X, Mohand-Said S, Bujakowska K, Nandrot EF, Lorenz B, Preising M, Kellner U, Renner AB, Bernd A, Antonio A, Moskova-Doumanova V, Lancelot ME, Poloschek CM, Drumare I, foort-Dhellemmes S, Wissinger B, Leveillard T, Hamel CP, Schorderet DF, De BE, Berger W, Jacobson SG, Zrenner E, Sahel JA, Bhattacharya SS, Zeitz C (2009) TRPM1 is mutated in patients with autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 85:720–729CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Nakamura M, Sanuki R, Yasuma TR, Onishi A, Nishiguchi KM, Koike C, Kadowaki M, Kondo M, Miyake Y, Furukawa T (2010) TRPM1 mutations are associated with the complete form of congenital stationary night blindness. Mol Vis 16:425–437PubMedCentralPubMedGoogle Scholar
  36. 36.
    van Genderen MM, Bijveld MM, Claassen YB, Florijn RJ, Pearring JN, Meire FM, McCall MA, Riemslag FC, Gregg RG, Bergen AA, Kamermans M (2009) Mutations in TRPM1 are a common cause of complete congenital stationary night blindness. Am J Hum Genet 85: 730–736CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Xu XZ, Moebius F, Gill DL, Montell C (2001) Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc Natl Acad Sci USA 98:10692–10697CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Brink PA, Ferreira A, Moolman JC, Weymar HW, van der Merwe PL, Corfield VA (1995) Gene for progressive familial heart block type I maps to chromosome 19q13. Circulation 91:1633–1640CrossRefPubMedGoogle Scholar
  39. 39.
    Kruse M, Schulze-Bahr E, Corfield V, Beckmann A, Stallmeyer B, Kurtbay G, Ohmert I, Schulze-Bahr E, Brink P, Pongs O (2009) Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J Clin Invest 119:2737–2744CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Walder RY, Shalev H, Brennan TM, Carmi R, Elbedour K, Scott DA, Hanauer A, Mark AL, Patil S, Stone EM, Sheffield VC (1997) Familial hypomagnesemia maps to chromosome 9q, not to the X chromosome: genetic linkage mapping and analysis of a balanced translocation breakpoint. Hum Mol Genet 6:1491–1497CrossRefPubMedGoogle Scholar
  41. 41.
    Schlingmann KP, Weber S, Peters M, Niemann NL, Vitzthum H, Klingel K, Kratz M, Haddad E, Ristoff E, Dinour D, Syrrou M, Nielsen S, Sassen M, Waldegger S, Seyberth HW, Konrad M (2002) Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 31:166–170CrossRefPubMedGoogle Scholar
  42. 42.
    Walder RY, Landau D, Meyer P, Shalev H, Tsolia M, Borochowitz Z, Boettger MB, Beck GE, Englehardt RK, Carmi R, Sheffield VC (2002) Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 31:171–174CrossRefPubMedGoogle Scholar
  43. 43.
    Schlingmann KP, Sassen MC, Weber S, Pechmann U, Kusch K, Pelken L, Lotan D, Syrrou M, Prebble JJ, Cole DE, Metzger DL, Rahman S, Tajima T, Shu SG, Waldegger S, Seyberth HW, Konrad M (2005) Novel TRPM6 mutations in 21 families with primary hypomagnesemia and secondary hypocalcemia. J Am Soc Nephrol 16:3061–3069CrossRefPubMedGoogle Scholar
  44. 44.
    Chubanov V, Schlingmann KP, Waring J, Heinzinger J, Kaske S, Waldegger S, Schnitzler M, Gudermann T (2007) Hypomagnesemia with secondary hypocalcemia due to a missense mutation in the putative pore-forming region of TRPM6. J Biol Chem 282:7656–7667CrossRefPubMedGoogle Scholar
  45. 45.
    Chubanov V, Waldegger S, Schnitzler M, Vitzthum H, Sassen MC, Seyberth HW, Konrad M, Gudermann T (2004) Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci USA 101:2894–2899CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Clapham DE, Nilius B, Owsianik G (2009) Transient Receptor Potential Channels: TRPP1. [article online], 2009, Available from http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=504.
  47. 47.
    The European Polycystic Kidney Disease Consortium (1994) The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell 77:881–894CrossRefGoogle Scholar
  48. 48.
    Qian F, Germino FJ, Cai Y, Zhang X, Somlo S, Germino GG (1997) PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet 16:179–183CrossRefPubMedGoogle Scholar
  49. 49.
    Sharif-Naeini R, Folgering JH, Bichet D, Duprat F, Lauritzen I, Arhatte M, Jodar M, Dedman A, Chatelain FC, Schulte U, Retailleau K, Loufrani L, Patel A, Sachs F, Delmas P, Peters DJ, Honore E (2009) Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139: 587–596CrossRefPubMedGoogle Scholar
  50. 50.
    Patel V, Chowdhury R, Igarashi P (2009) Advances in the pathogenesis and treatment of polycystic kidney disease. Curr Opin Nephrol Hypertens 18:99–106CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Koptides M, Hadjimichael C, Koupepidou P, Pierides A, Constantinou DC (1999) Germinal and somatic mutations in the PKD2 gene of renal cysts in autosomal dominant polycystic kidney disease. Hum Mol Genet 8:509–513CrossRefPubMedGoogle Scholar
  52. 52.
    Koptides M, Mean R, Demetriou K, Constantinides R, Pierides A, Harris PC, Deltas CC (2000) Screening of the PKD1 duplicated region reveals multiple single nucleotide polymorphisms and a de novo mutation in Hellenic polycystic kidney disease families. Hum Mutat 16:176CrossRefPubMedGoogle Scholar
  53. 53.
    Pei Y (2001) A “two-hit” model of cystogenesis in autosomal dominant polycystic kidney disease? Trends Mol Med 7:151–156CrossRefPubMedGoogle Scholar
  54. 54.
    Watnick T, He N, Wang K, Liang Y, Parfrey P, Hefferton D, St George-Hyslop P, Germino G, Pei Y (2000) Mutations of PKD1 in ADPKD2 cysts suggest a pathogenic effect of trans-heterozygous mutations. Nat Genet 25:143–144CrossRefPubMedGoogle Scholar
  55. 55.
    Wu G, Somlo S (2000) Molecular genetics and mechanism of autosomal dominant polycystic kidney disease. Mol Genet Metab 69:1–15CrossRefPubMedGoogle Scholar
  56. 56.
    Wu G, Tian X, Nishimura S, Markowitz GS, D’Agati V, Park JH, Yao L, Li L, Geng L, Zhao H, Edelmann W, Somlo S (2002) Trans-heterozygous Pkd1 and Pkd2 mutations modify expression of polycystic kidney disease. Hum Mol Genet 11:1845–1854CrossRefPubMedGoogle Scholar
  57. 57.
    Puertollano R, Kiselyov K (2009) TRPMLs: in sickness and in health. Am J Physiol Renal Physiol 296:F1245–F1254CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Bargal R, Avidan N, Ben-Asher E, Olender Z, Zeigler M, Frumkin A, Raas-Rothschild A, Glusman G, Lancet D, Bach G (2000) Identification of the gene causing mucolipidosis type IV. Nat Genet 26:118–123CrossRefPubMedGoogle Scholar
  59. 59.
    Bassi MT, Manzoni M, Monti E, Pizzo MT, Ballabio A, Borsani G (2000) Cloning of the gene encoding a novel integral membrane protein, mucolipidin-and identification of the two major founder mutations causing mucolipidosis type IV. Am J Hum Genet 67:1110–1120CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    LaPlante JM, Ye CP, Quinn SJ, Goldin E, Brown EM, Slaugenhaupt SA, Vassilev PM (2004) Functional links between mucolipin-1 and Ca2+-dependent membrane trafficking in mucolipidosis IV. Biochem Biophys Res Commun 322:1384–1391CrossRefPubMedGoogle Scholar
  61. 61.
    Vergarajauregui S, Puertollano R (2008) Mucolipidosis type IV: the importance of functional lysosomes for efficient autophagy. Autophagy 4:832–834CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Slaugenhaupt SA, Acierno JS Jr, Helbling LA, Bove C, Goldin E, Bach G, Schiffmann R, Gusella JF (1999) Mapping of the mucolipidosis type IV gene to chromosome 19p and definition of founder haplotypes. Am J Hum Genet 65:773–778CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Altarescu G, Sun M, Moore DF, Smith JA, Wiggs EA, Solomon BI, Patronas NJ, Frei KP, Gupta S, Kaneski CR, Quarrell OW, Slaugenhaupt SA, Goldin E, Schiffmann R (2002) The neurogenetics of mucolipidosis type IV. Neurology 59:306–313CrossRefPubMedGoogle Scholar
  64. 64.
    Sun M, Goldin E, Stahl S, Falardeau JL, Kennedy JC, Acierno JS Jr, Bove C, Kaneski CR, Nagle J, Bromley MC, Colman M, Schiffmann R, Slaugenhaupt SA (2000) Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum Mol Genet 9:2471–2478CrossRefPubMedGoogle Scholar
  65. 65.
    Wang ZH, Zeng B, Pastores GM, Raksadawan N, Ong E, Kolodny EH (2001) Rapid detection of the two common mutations in Ashkenazi Jewish patients with mucolipidosis type IV. Genet Test 5:87–92CrossRefPubMedGoogle Scholar
  66. 66.
    Venugopal B, Browning MF, Curcio-Morelli C, Varro A, Michaud N, Nanthakumar N, Walkley SU, Pickel J, Slaugenhaupt SA (2007) Neurologic, gastric, and opthalmologic pathologies in a murine model of mucolipidosis type IV. Am J Hum Genet 81:1070–1083CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Xenophontos S, Constantinides R, Hayashi T, Mochizuki T, Somlo S, Pierides A, Deltas CC (1997) A translation frameshift mutation induced by a cytosine insertion in the polycystic kidney disease 2 gene (PDK2). Hum Mol Genet 6:949–952CrossRefPubMedGoogle Scholar
  68. 68.
    Veldhuisen B, Saris JJ, de HS, Hayashi T, Reynolds DM, Mochizuki T, Elles R, Fossdal R, Bogdanova N, van Dijk MA, Coto E, Ravine D, Norby S, Verellen-Dumoulin C, Breuning MH, Somlo S, Peters DJ (1997) A spectrum of mutations in the second gene for autosomal dominant polycystic kidney disease (PKD2). Am J Hum Genet 61:547–555CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Viribay M, Hayashi T, Telleria D, Mochizuki T, Reynolds DM, Alonso R, Lens XM, Moreno F, Harris PC, Somlo S, San Millan JL (1997) Novel stop and frameshifting mutations in the autosomal dominant polycystic kidney disease 2 (PKD2) gene. Hum Genet 101:229–234CrossRefPubMedGoogle Scholar
  70. 70.
    Reynolds DM, Hayashi T, Cai Y, Veldhuisen B, Watnick TJ, Lens XM, Mochizuki T, Qian F, Maeda Y, Li L, Fossdal R, Coto E, Wu G, Breuning MH, Germino GG, Peters DJ, Somlo S (1999) Aberrant splicing in the PKD2 gene as a cause of polycystic kidney disease. J Am Soc Nephrol 10:2342–2351PubMedGoogle Scholar
  71. 71.
    Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342CrossRefPubMedGoogle Scholar
  72. 72.
    Bergmann C, Bruchle NO, Frank V, Rehder H, Zerres K (2008) Perinatal deaths in a family with autosomal dominant polycystic kidney disease and a PKD2 mutation. N Engl J Med 359:318–319CrossRefPubMedGoogle Scholar
  73. 73.
    Pei Y, Wang K, Kasenda M, Paterson AD, Liang Y, Huang E, Lian J, Rogovea E, Somlo S, St George-Hyslop P (1998) A novel frameshift mutation induced by an adenosine insertion in the polycystic kidney disease 2 (PKD2) gene. Kidney Int 53:1127–1132CrossRefPubMedGoogle Scholar
  74. 74.
    Pei Y, Paterson AD, Wang KR, He N, Hefferton D, Watnick T, Germino GG, Parfrey P, Somlo S, St George-Hyslop P (2001) Bilineal disease and trans-heterozygotes in autosomal dominant polycystic kidney disease. Am J Hum Genet 68:355–363CrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    Bargal R, Avidan N, Olender T, Ben AE, Zeigler M, Raas-Rothschild A, Frumkin A, Ben-Yoseph O, Friedlender Y, Lancet D, Bach G (2001) Mucolipidosis type IV: novel MCOLN1 mutations in Jewish and non-Jewish patients and the frequency of the disease in the Ashkenazi Jewish population. Hum Mutat 17:397–402CrossRefPubMedGoogle Scholar
  76. 76.
    Bach G, Webb MB, Bargal R, Zeigler M, Ekstein J (2005) The frequency of mucolipidosis type IV in the Ashkenazi Jewish population and the identification of 3 novel MCOLN1 mutations. Hum Mutat 26:591CrossRefPubMedGoogle Scholar
  77. 77.
    Raychowdhury MK, Gonzalez-Perrett S, Montalbetti N, Timpanaro GA, Chasan B, Goldmann WH, Stahl S, Cooney A, Goldin E, Cantiello HF (2004) Molecular pathophysiology of mucolipidosis type IV: pH dysregulation of the mucolipin-1 cation channel. Hum Mol Genet 13:617–627CrossRefPubMedGoogle Scholar
  78. 78.
    Dobrovolny R, Liskova P, Ledvinova J, Poupetova H, Asfaw B, Filipec M, Jirsova K, Kraus J, Elleder M, Mucolipidosis IV (2007) Report of a case with ocular restricted phenotype caused by leaky splice mutation. Am J Ophthalmol 143:663–671CrossRefPubMedGoogle Scholar
  79. 79.
    Tuysuz B, Goldin E, Metin B, Korkmaz B, Yalcinkaya C (2009) Mucolipidosis type IV in a Turkish boy associated with a novel MCOLN1 mutation. Brain Dev 31:702–705CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.St. George’s University of LondonLondonUK

Personalised recommendations