TRPV Channels in Tumor Growth and Progression

  • Giorgio SantoniEmail author
  • Valerio Farfariello
  • Consuelo Amantini
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 704)


Transient receptor potential (TRP) channels affect several physiological and pathological processes. In particular, TRP channels have been recently involved in the triggering of enhanced proliferation, aberrant differentiation, and resistance to apoptotic cell death leading to the uncontrolled tumor invasion. About thirty TRPs have been identified to date, and are classified in seven different families: TRPC (Canonical), TRPV (Vanilloid), TRPM (Melastatin), TRPML (Mucolipin), TRPP (Polycystin), and TRPA (Ankyrin transmembrane protein) and TRPN (NomPC-like). Among these channel families, the TRPC, TRPM, and TRPV families have been mainly correlated with malignant growth and progression. The aim of this review is to summarize data reported so far on the expression and the functional role of TRPV channels during cancer growth and progression. TRPV channels have been found to regulate cancer cell proliferation, apoptosis, angiogenesis, migration and invasion during tumor progression, and depending on the stage of the cancer, up- and down-regulation of TRPV mRNA and protein expression have been reported. These changes may have cancer promoting effects by increasing the expression of constitutively active TRPV channels in the plasma membrane of cancer cells by enhancing Ca2+-dependent proliferative response; in addition, an altered expression of TRPV channels may also offer a survival advantage, such as resistance of cancer cells to apoptotic-induced cell death. However, recently, a role of TRPV gene mutations in cancer development, and a relationship between the expression of specific TRPV gene single nucleotide polymorphisms and increased cancer risk have been reported. We are only at the beginning, a more deep studies on the physiopathology role of TRPV channels are required to understand the functional activity of these channels in cancer, to assess which TRPV proteins are associated with the development and progression of cancer and to develop further knowledge of TRPV proteins as valuable diagnostic and/or prognostic markers, as well as targets for pharmaceutical intervention and targeting in cancer.


Calcium channels TRP TRPV Tumor growth Tumor progression Tumor invasion Cell survival Apoptosis Cell proliferation Migration 


  1. 1.
    Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127:679–695PubMedGoogle Scholar
  2. 2.
    Weinberg RA (2006) Multi-step tumorigenesis. In: The biology of cancer. Garland Sciences, New York, NY, Chapter 11Google Scholar
  3. 3.
    Pusztai L, Lewis CE, Lorenzen J, McGee JO (1993) Growth factors: regulation of normal and neoplastic growth. J Pathol 169:191–201PubMedGoogle Scholar
  4. 4.
    Pluda JM (1997) Tumor-associated angiogenesis: mechanisms, clinical implications, and therapeutic strategies. Semin Oncol 24:203–218PubMedGoogle Scholar
  5. 5.
    Price JT, Bonovich MT, Kohn EC (1997) The biochemistry of cancer dissemination. Crit Rev Biochem Mol Biol 32:175–253PubMedGoogle Scholar
  6. 6.
    Liotta LA, Kohn EC (1997) Invasion and metastasis. In: Holland JF, Bast RC Jr, Morton DL, Frei III E, Kufe DW, Weichselbaum RR, (eds) Cancer Medicine, 4th ed. Williams & Wilkins, Baltimore, MD, p. 165Google Scholar
  7. 7.
    Kiselyov K, Soyombo A, Muallem S (2007) TRPpathies. J Physiol 578:641–653PubMedCentralPubMedGoogle Scholar
  8. 8.
    Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217PubMedGoogle Scholar
  9. 9.
    Xu XZ, Moebius F, Gill DL, Montell C (2001) Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc Natl Acad Sci USA 98:10692–10697PubMedCentralPubMedGoogle Scholar
  10. 10.
    Wisnoskey BJ, Sinkins WG, Schilling WP (2003) Activation of vanilloid receptor type 1 in the endoplasmic reticulum fails to activate store-operated Ca2+ entry. Biochem J 372: 517–528PubMedCentralPubMedGoogle Scholar
  11. 11.
    Thebault S, Lemonnier L, Bidaux G, Flourakis M, Bavencoffe A, Gordienko D, Roudbaraki M, Delcourt P, Panchin Y, Shuba Y, Skryma R, Prevarskaya N (2005) Novel role of cold/menthol-sensitive transient receptor potential melastatine family member 8 (TRPM8) in the activation of store-operated channels in LNCaP human prostate cancer epithelial cells. J Biol Chem 280:39423–39435PubMedGoogle Scholar
  12. 12.
    Xin H, Tanaka H, Yamaguchi M, Takemori S, Nakamura A, Kohama K (2005) Vanilloid receptor expressed in the sarcoplasmic reticulum of rat skeletal muscle. Biochem Biophys Res Commun 332:756–762PubMedGoogle Scholar
  13. 13.
    Bidaux G, Flourakis M, Thebault S, Zholos A, Beck B, Gkika D, Roudbaraki M, Bonnal JL, Mauroy B, Shuba Y, Skryma R, Prevarskaya N (2007) Prostate cell differentiation status determines transient receptor potential melastatin member 8 channel subcellular localization and function. J Clin Invest 117:1647–1657PubMedCentralPubMedGoogle Scholar
  14. 14.
    Prevarskaya N, Zhang L, Barritt G (2007) TRP channels in cancer. Biochim Biophys Acta 1772:937–946PubMedGoogle Scholar
  15. 15.
    Gkika D, Prevarskaya N (2009) Molecular mechanisms of TRP regulation in tumor growth and metastasis. Biochim Biophys Acta 1793:953–958PubMedGoogle Scholar
  16. 16.
    Montell C (2003) Thermosensation: hot findings make TRPNs very cool. Curr Biol 13:R476–R478PubMedGoogle Scholar
  17. 17.
    Duncan LM, Deeds J, Hunter J, Shao J, Holmgren LM, Woolf EA, Tepper RI, Shyjan AW (1998) Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res 58:1515–1520PubMedGoogle Scholar
  18. 18.
    Tsavaler L, Shapero MH, Morkowski S, Laus R (2001) Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res 61:3760–3769PubMedGoogle Scholar
  19. 19.
    Wissenbach U, Niemeyer BA, Fixemer T, Schneidewind A, Trost C, Cavalie A, Reus K, Meese E, Bonkhoff H, Flockerzi V (2001) Expression of CaT-like, a novel calcium-selective channel, correlates with the malignancy of prostate cancer. J Biol Chem 276:19461–19468PubMedGoogle Scholar
  20. 20.
    Thebault S, Flourakis M, Vanoverberghe K, Vandermoere F, Roudbaraki M, Lehen’kyi V, Slomianny C, Beck B, Mariot P, Bonnal JL, Mauroy B, Shuba Y, Capiod T, Skryma R, Prevarskaya N (2006) Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Res 66:2038–2047PubMedGoogle Scholar
  21. 21.
    Amantini C, Mosca M, Nabissi M, Lucciarini R, Caprodossi S, Arcella A, Giangaspero F, Santoni G (2007) Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation. J Neurochem 102:977–990PubMedGoogle Scholar
  22. 22.
    Caprodossi S, Lucciarini R, Amantini C, Nabissi M, Canesin G, Ballarini P, Di Spilimbergo A, Cardarelli MA, Servi L, Mammana G, Santoni G (2008) Transient receptor potential vanilloid type 2 (TRPV2) expression in normal urothelium and in urothelial carcinoma of human bladder: correlation with the pathologic stage. Eur Urol 54:612–620PubMedGoogle Scholar
  23. 23.
    Nabissi M, Morelli MB, Amantini C, Farfariello V, Ricci-Vitiani L, Caprodossi S, Arcella A, Santoni M, Giangaspero F, De Maria R, Santoni G (2010) TRPV2 channel negatively controls glioma cell proliferation and resistance to Fas-induced apoptosis in ERK-dependent manner. Carcinogenesis 31:794–803PubMedGoogle Scholar
  24. 24.
    Prevarskaya N, Skryma R, Bidaux G, Flourakis M, Shuba Y (2007) Ion channels in death and differentiation of prostate cancer cells. Cell Death Differ 14:1295–1304PubMedGoogle Scholar
  25. 25.
    Flourakis M, Prevarskaya N (2009) Insights into Ca2+ homeostasis of advanced prostate cancer cells. Biochim Biophys Acta 1793:1105–1109PubMedGoogle Scholar
  26. 26.
    Lallet-Daher H, Roudbaraki M, Bavencoffe A, Mariot P, Gackière F, Bidaux G, Urbain R, Gosset P, Delcourt P, Fleurisse L, Slomianny C, Dewailly E, Mauroy B, Bonnal JL, Skryma R, Prevarskaya N (2009) Intermediate-conductance Ca2+-activated K+ channels (IKCa1) regulate human prostate cancer cell proliferation through a close control of calcium entry. Oncogene 28:1792–1806PubMedGoogle Scholar
  27. 27.
    Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG (2005) The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 310: 490–493PubMedGoogle Scholar
  28. 28.
    Cha SK, Ortega B, Kurosu H, Rosenblatt KP, Kuro-O M, Huang CL (2008) Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci USA 105:9805–9810PubMedCentralPubMedGoogle Scholar
  29. 29.
    Bode AM, Cho YY, Zheng D, Zhu F, Ericson ME, Ma WY, Yao K, Dong Z (2009) Transient receptor potential type vanilloid 1 suppresses skin carcinogenesis. Cancer Res 69:905–913PubMedCentralPubMedGoogle Scholar
  30. 30.
    Zhang N, Oppenheim JJ (2005) Crosstalk between chemokines and neuronal receptors bridges immune and nervous systems. J Leukoc Biol 78:1210–1214PubMedGoogle Scholar
  31. 31.
    Amantini C, Ballarini P, Caprodossi S, Nabissi M, Morelli MB, Lucciarini R, Cardarelli MA, Mammana G, Santoni G (2009) Triggering of transient receptor potential vanilloid type 1 (TRPV1) by capsaicin induces Fas/CD95-mediated apoptosis of urothelial cancer cells in an ATM-dependent manner. Carcinogenesis 30:1320–1329PubMedGoogle Scholar
  32. 32.
    Reilly CA, Johansen ME, Lanza DL, Lee J, Lim JO, Yost GS (2005) Calcium-dependent and independent mechanisms of capsaicin receptor (TRPV1)-mediated cytokine production and cell death in human bronchial epithelial cells. J Biochem Mol Toxicol 19:266–275PubMedCentralPubMedGoogle Scholar
  33. 33.
    Zhang F, Yang H, Wang Z, Mergler S, Liu H, Kawakita T, Tachado SD, Pan Z, Capó-Aponte JE, Pleyer U, Koziel H, Kao WW, Reinach PS (2007) Transient receptor potential vanilloid 1 activation induces inflammatory cytokine release in corneal epithelium through MAPK signaling. J Cell Physiol 213:730–739PubMedGoogle Scholar
  34. 34.
    Kaur R, O’Shaughnessy CT, Jarvie EM, Winchester WJ, McLean PG (2009) Characterization of a calcitonin gene-related peptide release assay in rat isolated distal colon. Arch Pharm Res 32:1775–1781PubMedGoogle Scholar
  35. 35.
    Hoeft B, Linseisen J, Beckmann L, Müller-Decker K, Canzian F, Hüsing A, Kaaks R, Vogel U, Jakobsen MU, Overvad K, Hansen RD, Knüppel S, Boeing H, Trichopoulou A, Yvoni K, Trichopoulos D, Berrino F, Palli D, Panico S, Tumino R, Bueno-de-Mesquita HB, van Duijnhoven FJ, van Gils CH, Peeters PH, Dumeaux V, Lund E, Huerta Castaño JM, Muñoz X, Rodriguez L, Barricarte A, Manjer J, Jirström K, Van Guelpen B, Hallmans G, Spencer EA, Crowe FL, Khaw KT, Wareham N, Morois S, Boutron-Ruault MC, Clavel-Chapelon F, Chajes V, Jenab M, Boffetta P, Vineis P, Mouw T, Norat T, Riboli E, Nieters A (2009) Polymorphisms in fatty acid metabolism-related genes are associated with colorectal cancer risk. Carcinogenesis 31:466–472PubMedGoogle Scholar
  36. 36.
    Bloethner S, Chen B, Hemminki K, Müller-Berghaus J, Ugurel S, Schadendorf D, Kumar R (2005) Effect of common B-RAF and N-RAS mutations on global gene expression in melanoma cell lines. Carcinogenesis 26:1224–1232PubMedGoogle Scholar
  37. 37.
    Fabris S, Todoerti K, Mosca L, Agnelli L, Intini D, Lionetti M, Guerneri S, Lambertenghi-Deliliers G, Bertoni F, Neri A (2007) Molecular and transcriptional characterization of the novel 17p11.2-p12 amplicon in multiple myeloma. Genes Chromosomes Cancer 46:1109–1118PubMedGoogle Scholar
  38. 38.
    Zatkova A, Merk S, Wendehack M, Bilban M, Muzik EM, Muradyan A, Haferlach C, Haferlach T, Wimmer K, Fonatsch C, Ullmann R (2009) AML/MDS with 11q/MLL amplification show characteristic gene expression signature and interplay of DNA copy number changes. Genes Chromosomes Cancer 48:510–520PubMedGoogle Scholar
  39. 39.
    Boyd RS, Jukes-Jones R, Walewska R, Brown D, Dyer MJ, Cain K (2009) Protein profiling of plasma membranes defines aberrant signaling pathways in mantle cell lymphoma. Mol Cell Proteomics 8:1501–1515PubMedCentralPubMedGoogle Scholar
  40. 40.
    Marincsák R, Tóth BI, Czifra G, Márton I, Rédl P, Tar I, Tóth L, Kovács L, Bíró T (2009) Increased expression of TRPV1 in squamous cell carcinoma of the human tongue. Oral Dis 15:328–335PubMedGoogle Scholar
  41. 41.
    Lazzeri M, Vannucchi MG, Spinelli M, Bizzoco E, Beneforti P, Turini D, Faussone-Pellegrini MS (2005) Transient receptor potential vanilloid type 1 (TRPV1) expression changes from normal urothelium to transitional cell carcinoma of human bladder. Eur Urol 48:691–698PubMedGoogle Scholar
  42. 42.
    Kim S, Kang C, Shin CY, Hwang SW, Yang YD, Shim WS, Park MY, Kim E, Kim M, Kim BM, Cho H, Shin Y, Oh U (2006) TRPV1 recapitulates native capsaicin receptor in sensory neurons in association with Fas-associated factor 1. J Neurosci 26:2403–2412PubMedGoogle Scholar
  43. 43.
    Ghosh AK, Basu S (2010) Fas-associated factor 1 is a negative regulator in capsaicin induced cancer cell apoptosis. Cancer Lett 287:142–149PubMedGoogle Scholar
  44. 44.
    Kalogris C, Caprodossi S, Amantini C, Lambertucci F, Nabissi M, Farfariello V, Filosa A, Emiliozzi MC, Mammana G, Santoni G Expression of transient receptor potential vanilloid-1 (TRPV1) in urothelial cancers of human bladder: relation to clinicopathological and molecular parameters. Histopathology. DOI: 10.1111/j.1365-2559.2010.03683.xGoogle Scholar
  45. 45.
    Birder LA (2007) TRPs in bladder diseases. Biochem Biophys Acta 772:879–884Google Scholar
  46. 46.
    Cruz CD, Charrua A, Vieira E, Valente J, Avelino A, Cruz F (2008) Intrathecal delivery of resiniferatoxin (RTX) reduces detrusor overactivity and spinal expression of TRPV1 in spinal cord injured animals. Exp Neurol 214:301–308PubMedGoogle Scholar
  47. 47.
    Apostolidis A, Brady CM, Yiangou Y, Davis J, Fowler CJ, Anand P (2005) Capsaicin receptor TRPV1 in urothelium of neurogenic human bladders and effect of intravesical resiniferatoxin. Urology 65:400–405PubMedGoogle Scholar
  48. 48.
    Liu HT, Kuo HC (2007) Increased expression of transient receptor potential vanilloid subfamily 1 in the bladder predicts the response to intravesical instillations of resiniferatoxin in patients with refractory idiopathic detrusor overactivity. BJU Int 100:1086–1090PubMedGoogle Scholar
  49. 49.
    Contassot E, Wilmotte R, Tenan M, Belkouch MC, Schnüriger V, de Tribolet N, Burkhardt K, Dietrich PY (2004) Arachidonylethanolamide induces apoptosis of human glioma cells through vanilloid receptor-1. J Neuropathol Exp Neurol 63:956–963PubMedGoogle Scholar
  50. 50.
    Hartel M, di Mola FF, Selvaggi F, Mascetta G, Wente MN, Felix K, Giese NA, Hinz U, Di Sebastiano P, Büchler MW, Friess H (2006) Vanilloids in pancreatic cancer: potential for chemotherapy and pain management. Gut 55:519–528PubMedCentralPubMedGoogle Scholar
  51. 51.
    Zhang YW, Vande Woude GF (2003) HGF/SF-met signaling in the control of branching morphogenesis and invasion. J Cell Biochem 88:408–417PubMedGoogle Scholar
  52. 52.
    Waning J, Vriens J, Owsianik G, Stüwe L, Mally S, Fabian A, Frippiat C, Nilius B, Schwab A (2007) A novel function of capsaicin-sensitive TRPV1 channels: involvement in cell migration. Cell Calcium 42:17–25PubMedGoogle Scholar
  53. 53.
    Wondergem R, Ecay TW, Mahieu F, Owsianik G, Nilius B (2008) HGF/SF and menthol increase human glioblastoma cell calcium and migration. Biochem Biophys Res Commun 372:210–215PubMedGoogle Scholar
  54. 54.
    Vriens J, Janssens A, Prenen J, Nilius B, Wondergem R (2004) TRPV channels and modulation by hepatocyte growth factor/scatter factor in human hepatoblastoma (HepG2) cells. Cell Calcium 36:19–28PubMedGoogle Scholar
  55. 55.
    Miao X, Liu G, Xu X, Xie C, Sun F, Yang Y, Zhang T, Hua S, Fan W, Li Q, Huang S, Wang Q, Liu G, Zhong D (2008) High expression of vanilloid receptor-1 is associated with better prognosis of patients with hepatocellular carcinoma. Cancer Genet Cytogenet 186:25–32PubMedGoogle Scholar
  56. 56.
    Contassot E, Tenan M, Schnüriger V, Pelte MF, Dietrich PY (2004) Arachidonyl ethanolamide induces apoptosis of uterine cervix cancer cells via aberrantly expressed vanilloid receptor-1. Gynecol Oncol 93:182–188PubMedGoogle Scholar
  57. 57.
    Ramer R, Merkord J, Rohde H, Hinz B (2010) Cannabidiol inhibits cancer cell invasion via upregulation of tissue inhibitor of matrix metalloproteinases-1. Biochem Pharmacol 79: 955–966PubMedGoogle Scholar
  58. 58.
    Sanchez MG, Sanchez AM, Collado B, Malagarie-Cazenave S, Olea N, Carmena MJ, Prieto JC, Diaz-Laviada I (2005) Expression of the transient receptor potential vanilloid 1 (TRPV1) in LNCaP and PC-3 prostate cancer cells and in human prostate tissue. Eur J Pharmacol 515:20–27PubMedGoogle Scholar
  59. 59.
    Czifra G, Varga A, Nyeste K, Marincsák R, Tóth BI, Kovács I, Kovács L, Bíró T (2009) Increased expressions of cannabinoid receptor-1 and transient receptor potential vanilloid-1 in human prostate carcinoma. J Cancer Res Clin Oncol 135:507–514PubMedGoogle Scholar
  60. 60.
    Sánchez AM, Sánchez MG, Malagarie-Cazenave S, Olea N, Díaz-Laviada I (2006) Induction of apoptosis in prostate tumor PC-3 cells and inhibition of xenograft prostate tumor growth by the vanilloid capsaicin. Apoptosis 11:89–99PubMedGoogle Scholar
  61. 61.
    Malagarie-Cazenave S, Olea-Herrero N, Vara D, Díaz-Laviada I (2009) Capsaicin, a component of red peppers, induces expression of androgen receptor via PI3K and MAPK pathways in prostate LNCaP cells. FEBS Lett 583:141–147PubMedGoogle Scholar
  62. 62.
    Qiao S, Li W, Tsubouchi R, Murakami K, Yoshino M (2004) Role of vanilloid receptors in the capsaicin-mediated induction of iNOS in PC12 cells. Neurochem Res 29:687–689PubMedGoogle Scholar
  63. 63.
    Hosseini A, Koskela LR, Ehrén I, Aguilar-Santelises M, Sirsjö A, Wiklund NP (2006) Enhanced formation of nitric oxide in bladder carcinoma in situ and in BCG treated bladder cancer. Nitric Oxide 15:337–343PubMedGoogle Scholar
  64. 64.
    Kanzaki M, Zhang YQ, Mashima H, Li L, Shibata H, Kojima I (1999) Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat Cell Biol 1:165–170PubMedGoogle Scholar
  65. 65.
    Rochester MA, Patel N, Turney BW, Davies DR, Roberts IS, Crew J, Protheroe A, Macaulay VM (2007) The type 1 insulin-like growth factor receptor is over-expressed in bladder cancer. BJU Int 100:1396–1401PubMedGoogle Scholar
  66. 66.
    Zhao H, Grossman HB, Spitz MR, Lerner SP, Zhang K, Wu X (2003) Plasma levels of insulin-like growth factor-1 and binding protein-3, and their association with bladder cancer risk. J Urol 169:714–717PubMedGoogle Scholar
  67. 67.
    Nagasawa M, Nakagawa Y, Tanaka S, Kojima I (2007) Chemotactic peptide fMetLeuPhe induces translocation of the TRPV2 channel in macrophages. J Cell Physiol 210:692–702PubMedGoogle Scholar
  68. 68.
    Wang C, Hu HZ, Colton CK, Wood JD, Zhu MX (2004) An alternative splicing product of the murine trpv1 gene dominant negatively modulates the activity of TRPV1 channels. J Biol Chem 279:37423–37430PubMedGoogle Scholar
  69. 69.
    Penna A, Juvin V, Chemin J, Compan V, Monet M, Rassendren FA (2006) PI3-kinase promotes TRPV2 activity independently of channel translocation to the plasma membrane. Cell Calcium 39:495–507PubMedGoogle Scholar
  70. 70.
    Monet M, Gkika D, Lehen’kyi V, Pourtier A, Vanden Abeele F, Bidaux G, Juvin V, Rassendren F, Humez S, Prevarsakaya N (2009) Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation. Biochim Biophys Acta 1793:528–539PubMedGoogle Scholar
  71. 71.
    Monet M, Lehen’kyi V, Gackiere F, Firlej V, Vandenberghe M, Roudbaraki M, Gkika D, Pourtier A, Bidaux G, Slomianny C, Delcourt P, Rassendren F, Bergerat JP, Ceraline J, Cabon F, Humez S, Prevarskaya N (2010) Role of cationic channel TRPV2 in promoting prostate cancer migration and progression to androgen resistance. Cancer Res 70:1225–1235PubMedGoogle Scholar
  72. 72.
    Liu G, Xie C, Sun F, Xu X, Yang Y, Zhang T, Deng Y, Wang D, Huang Z, Yang L, Huang S, Wang Q, Liu G, Zhong D, Miao X (2010) Clinical significance of transient receptor potential vanilloid 2 expression in human hepatocellular carcinoma. Cancer Genet Cytogenet 197: 54–59PubMedGoogle Scholar
  73. 73.
    Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos-Santiago I, Xie Y, DiStefano PS, Curtis R, Clapham DE (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418:181–186PubMedGoogle Scholar
  74. 74.
    Mandadi S, Sokabe T, Shibasaki K, Katanosaka K, Mizuno A, Moqrich A, Patapoutian A, Fukumi-Tominaga T, Mizumura K, Tominaga M (2009) TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP. Pflugers Arch 458:1093–1102PubMedCentralPubMedGoogle Scholar
  75. 75.
    Ueda T, Yamada T, Ugawa S, Ishida Y, Shimada S (2009) TRPV3, a thermosensitive channel is expressed in mouse distal colon epithelium. Biochem Biophys Res Commun 383:130–134PubMedGoogle Scholar
  76. 76.
    Lee H, Caterina MJ (2005) TRPV channels as thermosensory receptors in epithelial cells. Pflugers Arch 451:160–167PubMedGoogle Scholar
  77. 77.
    Caterina MJ (2007) Transient receptor potential ion channels as participants in thermosensation and thermoregulation. Am J Physiol Regul Integr Comp Physiol 292:R64–R76PubMedGoogle Scholar
  78. 78.
    Levine JD, Alessandri-Haber N (2007) TRP channels: targets for the relief of pain. Biochim Biophys Acta 1772:989–1003PubMedGoogle Scholar
  79. 79.
    Hu HZ, Xiao R, Wang C, Gao N, Colton CK, Wood JD, Zhu MX (2006) Potentiation of TRPV3 channel function by unsaturated fatty acids. J Cell Physiol 208:201–212PubMedGoogle Scholar
  80. 80.
    Jariwala U, Prescott J, Jia L, Barski A, Pregizer S, Cogan JP, Arasheben A, Tilley WD, Scher HI, Gerald WL, Buchanan G, Coetzee GA, Frenkel B (2007) Identification of novel androgen receptor target genes in prostate cancer. Mol Cancer 6:39PubMedCentralPubMedGoogle Scholar
  81. 81.
    Wang HP, Pu XY, Wang XH (2007) Distribution profiles of transient receptor potential melastatin-related and vanilloid-related channels in prostatic tissue in rat. Asian J Androl 9:634–640PubMedGoogle Scholar
  82. 82.
    Potter DA, Tirnauer JS, Janssen R, Croall DE, Hughes CN, Fiacco KA, Mier JW, Maki M, Herman IM (1998) Calpain regulates actin remodeling during cell spreading. J Cell Biol 141:647–662PubMedCentralPubMedGoogle Scholar
  83. 83.
    Becker D, Bereiter-Hahn J, Jendrach M (2009) Functional interaction of the cation channel transient receptor potential vanilloid 4 (TRPV4) and actin in volume regulation. Eur J Cell Biol 88:141–152PubMedGoogle Scholar
  84. 84.
    Benfenati V, Amiry-Moghaddam M, Caprini M, Mylonakou MN, Rapisarda C, Ottersen OP, Ferroni S (2007) Expression and functional characterization of transient receptor potential vanilloid-related channel 4 (TRPV4) in rat cortical astrocytes. Neuroscience 148:876–892PubMedGoogle Scholar
  85. 85.
    Yamada T, Ugawa S, Ueda T, Ishida Y, Kajita K, Shimada S (2009) Differential localizations of the transient receptor potential channels TRPV4 and TRPV1 in the mouse urinary bladder. J Histochem Cytochem 57:277–287PubMedCentralPubMedGoogle Scholar
  86. 86.
    Everaerts W, Vriens J, Owsianik G, Appendino G, Voets T, De Ridder D, Nilius B (2010) Functional characterization of transient receptor potential channels in mouse urothelial cells. Am J Physiol Renal Physiol 298:F692–F701PubMedCentralPubMedGoogle Scholar
  87. 87.
    Mochizuki T, Sokabe T, Araki I, Fujishita K, Shibasaki K, Uchida K, Naruse K, Koizumi S, Takeda M, Tominaga M (2009) The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J Biol Chem 284:21257–21264PubMedCentralPubMedGoogle Scholar
  88. 88.
    Nijenhuis T, Hoenderop JG, Nilius B, Bindels RJ (2003) (Patho)physiological implications of the novel epithelial Ca2+ channels TRPV5 and TRPV6. Pflugers Arch 446:401–409PubMedGoogle Scholar
  89. 89.
    Peng JB, Brown EM, Hediger MA (2003) Epithelial Ca2+ entry channels: transcellular Ca2+ transport and beyond. J Physiol 551:729–740PubMedCentralPubMedGoogle Scholar
  90. 90.
    van Abel M, Hoenderop JG, van der Kemp AW, van Leeuwen JP, Bindels RJ (2003) Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection. Am J Physiol Gastrointest Liver Physiol 285:G78–G85PubMedGoogle Scholar
  91. 91.
    Irnaten M, Blanchard-Gutton N, Praetorius J, Harvey BJ (2009) Rapid effects of 17beta-estradiol on TRPV5 epithelial Ca2+ channels in rat renal cells. Steroids 74:642–649PubMedGoogle Scholar
  92. 92.
    Vasil’eva IO, Neguliaev IuA, Marakhova II, Semenova SB (2008) TRPV5 and TRPV6 calcium channels in human T cells. Tsitologiia 50:953–957PubMedGoogle Scholar
  93. 93.
    Semenova SB, Vassilieva IO, Fomina AF, Runov AL, Negulyaev YA (2009) Endogenous expression of TRPV5 and TRPV6 calcium channels in human leukemia K562 cells. Am J Physiol Cell Physiol 296:1098–1104Google Scholar
  94. 94.
    Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51PubMedGoogle Scholar
  95. 95.
    Ito S, Fujimori T, Hayashizaki Y, Nabeshima Y (2002) Identification of a novel mouse membrane-bound family 1 glycosidase-like protein, which carries an atypical active site structure. Biochim Biophys Acta 1576:341–345PubMedGoogle Scholar
  96. 96.
    Kuro-o M (2008) Klotho as a regulator of oxidative stress and senescence. Biol Chem 389:233–241PubMedGoogle Scholar
  97. 97.
    Lutomski D, Fouillit M, Bourin P, Mellottée D, Denize N, Pontet M, Bladier D, Caron M, Joubert-Caron R (1997) Externalization and binding of galectin-1 on cell surface of K562 cells upon erythroid differentiation. Glycobiology 7:1193–1199PubMedGoogle Scholar
  98. 98.
    Wissenbach U, Niemeyer BA (2007) TRPV6. Handb Exp Pharmacol 179:221–234PubMedGoogle Scholar
  99. 99.
    Bödding M (2007) TRP proteins and cancer. Cell Signal 19:617–624PubMedGoogle Scholar
  100. 100.
    Prevarskaya N, Flourakis M, Bidaux G, Thebault S, Skryma R (2007) Differential role of TRP channels in prostate cancer. Biochem Soc Trans 35:133–135PubMedGoogle Scholar
  101. 101.
    Peng JB, Chen XZ, Berger UV, Vassilev PM, Tsukaguchi H, Brown EM, Hediger MA (1999) Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem 274:22739–22746PubMedGoogle Scholar
  102. 102.
    Fixemer T, Wissenbach U, Flockerzi V, Bonkhoff H (2003) Expression of the Ca2+-selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumor progression. Oncogene 22:7858–7861PubMedGoogle Scholar
  103. 103.
    Wissenbach U, Niemeyer B, Himmerkus N, Fixemer T, Bonkhoff H, Flockerzi V (2004) TRPV6 and prostate cancer: cancer growth beyond the prostate correlates with increased TRPV6 Ca2+ channel expression. Biochem Biophys Res Commun 322:1359–1363PubMedGoogle Scholar
  104. 104.
    Peng JB, Zhuang L, Berger UV, Adam RM, Williams BJ, Brown EM, Hediger MA, Freeman MR (2001) CaT1 expression correlates with tumor grade in prostate cancer. Biochem Biophys Res Commun 282:729–734PubMedGoogle Scholar
  105. 105.
    Lehen’kyi V, Flourakis M, Skryma R, Prevarskaya N (2007) TRPV6 channel controls prostate cancer cell proliferation via Ca(2+)/NFAT-dependent pathways. Oncogene 26:7380–7385PubMedGoogle Scholar
  106. 106.
    Bödding M, Fecher-Trost C, Flockerzi V (2003) Store-operated Ca2+ current and TRPV6 channels in lymph node prostate cancer cells. J Biol Chem 278:50872–50879PubMedGoogle Scholar
  107. 107.
    Kessler T, Wissenbach U, Grobholz R, Flockerzi V (2009) TRPV6 alleles do not influence prostate cancer progression. BMC Cancer 9:380PubMedCentralPubMedGoogle Scholar
  108. 108.
    Zhuang L, Peng JB, Tou L, Takanaga H, Adam RM, Hediger MA, Freeman MR (2002) Calcium-selective ion channel, CaT1, is apically localized in gastrointestinal tract epithelia and is aberrantly expressed in human malignancies. Lab Invest 82:1755–1764PubMedGoogle Scholar
  109. 109.
    Bolanz KA, Hediger MA, Landowski CP (2008) The role of TRPV6 in breast carcinogenesis. Mol Cancer Ther 7:271–279PubMedGoogle Scholar
  110. 110.
    Schwarz EC, Wissenbach U, Niemeyer BA, Strauss B, Philipp SE, Flockerzi V, Hoth M (2006) TRPV6 potentiates calcium-dependent cell proliferation. Cell Calcium 39:163–173PubMedGoogle Scholar
  111. 111.
    Irnaten M, Blanchard-Gutton N, Harvey BJ (2008) Rapid effects of 17beta-estradiol on epithelial TRPV6 Ca2+ channel in human T84 colonic cells. Cell Calcium 44:441–452PubMedGoogle Scholar
  112. 112.
    Chetrite GS, Cortes-Prieto J, Philippe JC, Wright F, Pasqualini JR (2000) Comparison of estrogen concentrations, estrone sulfatase and aromatase activities in normal, and in cancerous, human breast tissues. J Steroid Biochem Mol Biol 72:23–27PubMedGoogle Scholar
  113. 113.
    Bolanz KA, Kovacs GG, Landowski CP, Hediger MA (2009) Tamoxifen inhibits TRPV6 activity via estrogen receptor-independent pathways in TRPV6-expressing MCF-7 breast cancer cells. Mol Cancer Res 7:2000–2010PubMedGoogle Scholar
  114. 114.
    Chow J, Norng M, Zhang J, Chai J (2007) TRPV6 mediates capsaicin-induced apoptosis in gastric cancer cells – Mechanisms behind a possible new “hot” cancer treatment. Biochim Biophys Acta 1773:565–576PubMedGoogle Scholar
  115. 115.
    Arcangeli A, Crociani O, Lastraioli E, Masi A, Pillozzi S, Becchetti A (2009) Targeting ion channels in cancer: a novel frontier in antineoplastic therapy. Curr Med Chem 16:66–93PubMedGoogle Scholar
  116. 116.
    Kunzelmann K (2005) Ion channels and cancer. J Membr Biol 205:159–173PubMedGoogle Scholar
  117. 117.
    Schönherr R (2005) Clinical relevance of ion channels for diagnosis and therapy of cancer. J Membr Biol 205:175–184PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Giorgio Santoni
    • 1
    Email author
  • Valerio Farfariello
    • 2
  • Consuelo Amantini
    • 1
  1. 1.Section of Experimental MedicineSchool of Pharmacy, University of CamerinoCamerinoItaly
  2. 2.Department of Molecular MedicineSapienza University of RomeRomeItaly

Personalised recommendations