Advertisement

Reduced interaction between numerical and model errors through anisotropic filtering

  • Marcello Meldi
  • Federico Perini
Part of the ERCOFTAC Series book series (ERCO, volume 16)

Abstract

The work addresses to a better comprehension of the error assessment in LES due to the coupling between the model and the numerical discretisation.

The possibility to reduce the interactions between the error sources is investigated through the use of an algebraic function correlating the characteristics length of the subgrid model Δ e to the subgrid scale Δ related to the grid discretization, incrementing the ratio between the two where the scales are poorly resolved.

The analysis, considering a range of grid resolutions as well as subfilter models, has been performed starting from database sets which have been reconstructed with ordinary kriging to estimate the sensitiveness of the strategy with respect to the simulation parameters. The results indicate that a reduction in the error cost function can be achieved for most subfilter models and that the approach looks quite stable for a moderate range of the grid resolution.

Keywords

Large-eddy Simulation anisotropic filtering errors interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.S. Winckelmans et al., Physics of Fluids 13, 1385-1403 (2001). CrossRefADSGoogle Scholar
  2. 2.
    J.W. Deardorff, Journal of Fluid Mechanics 41, 453-465 (1970). zbMATHCrossRefADSGoogle Scholar
  3. 3.
    J. Bardina, J.H. Ferziger, W.C. Reynolds, AIAA Paper 80-1357 (1980). Google Scholar
  4. 4.
    J.C. Magnient, P. Sagaut, M. Deville, Physics of Fluids 13, 1440-1449 (2001). CrossRefADSGoogle Scholar
  5. 5.
    S. Ghosal, Journal of Computational Physics 125, 187-206 (1996). zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    A. Yoshizawa, Journal of the Physical Society of Japan, Vol. 54 (1985). Google Scholar
  7. 7.
    J. Smagorinsky, Monthly Weather Review 91(3) 99-165 (1963). CrossRefADSGoogle Scholar
  8. 8.
    T.J.R. Hughes, Physics of Fluids 13 (2), 505-512 (2001). CrossRefADSGoogle Scholar
  9. 9.
    F. Nicoud, F. Ducros, Flow, Turbulence and Combustion 62, 183-200 (1999). zbMATHCrossRefGoogle Scholar
  10. 10.
    P.J. Mason, N.S. Callen, Journal of Fluid Mechanics 162, 439-462 (1986). zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    J.C. Jouhaud, P. Sagaut, Journal of Fluids Engineering 130 (2008). Google Scholar
  12. 12.
    J. Kim, P. Moin, R. Moser, Journal of Fluid Mechanics 177, 133-166 (1987). zbMATHCrossRefADSGoogle Scholar
  13. 13.
    P.Sagaut, T.H. Lê, Direct and Large Eddy Simulation II, Kluwer, 81-92 (1997). Google Scholar
  14. 14.
    D.J. Bodony, PhD Thesis, Stanford University (2005) Google Scholar
  15. 15.
    P. Sagaut, Large-Eddy Simulation for Acoustics, Cambridge (2007). Google Scholar
  16. 16.
    F. Anselmet, L. Fulachier, ERCOFTAC database, Exp. C38 (1993). Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Meccanica e CivileUniversità di ModenaModenaItaly

Personalised recommendations