Advertisement

Prospects of brassinosteroids in medicinal applications

  • R. Bhardwaj
  • N. Arora
  • P. Uppal
  • I. Sharma
  • M. K. Kanwar
Chapter
  • 2.1k Downloads

Abstract

Steroids are an imperative group of hormones which play a key role in the transmission of signals that mediate growth and physiological responses in most pluricellular organisms. Brassinosteroids (BRs), a class of plant-specific steroid hormones, control many of the developmental and physiological processes like their animal counterparts, including regulation of gene expression, cell division and expansion, differentiation, programmed cell death, and homeostasis. Recent studies have indicated that these hormones have antiviral, antifungal, antiproliferative, antibacterial, neuroprotective and immunomodulatory properties in animal system. BRs analogues have been reported to have antiviral activity against herpes simplex virus type 1 (HSV-1), arenaviruses as well as against replication of vesicular stomatitis virus (VSV) in Vero cells. Also, antiherpetic activities both in a human conjunctive cell line (IOBA-NHC) and murine herpetic stromal keratitis (HSK) experimental models have been reported. In human cells, anticancer structure-activity relationship of natural BRs revealed their high cytotoxic activity. Since, BRs and their analogues are reported to inhibit cell growth in cancer cell lines, they may be considered as promising phytohormones for potential anticancer drugs. The use of pollens in folk medicine also indicates scope of steroids of plant pollens in medicines. An attempt has been made in this paper to document the information available on the prospects of BRs in therapeutics.

Key words

Antiviral anticancer brassinosteroids medicines 

References

  1. Arora, N., Bhardwaj, R., Sharma, P., Arora, H.K., and Arora, P. 2008. Amelioration of Zn toxicity by 28-homobrassinolide in Zea mays L. Canadian J. Pure and Applied Sci. 2(3): 503–509.Google Scholar
  2. Bajguz, A. 2000. Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiol. Biochem. 38: 209–215.CrossRefGoogle Scholar
  3. Bajguz, A., and Hayat, S. 2008. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol.Biochem. doi:10.1016/j.plaphy.2008.10.002.Google Scholar
  4. Bajguz, A., and Tretyn, A. 2003. The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry. 62: 1027–1046.CrossRefPubMedGoogle Scholar
  5. Bhardwaj, R., Arora, H.K., Nagar, P.K., and Thukral, A.K. 2006. Brassinosteroids-A novel group of plant hormones. In: Plant Molecular Physiology-Current scenario and future Projections (Ed. P.C. Trivedi.). Aaviskar Publisher, Jaipur. pp. 58–84.Google Scholar
  6. Bishop, G. J., Nomura, T., Yokota, T., Harrison, K., Noguchi, T., Fujioka, S., Takatsuto, S., Jones, J.D., and Kamiya, Y. 1999. The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc. Nat. Acad. Sci. USA. 96: 1761–1766.CrossRefGoogle Scholar
  7. Bobrick, A.O., Khripach, V.A., Zhabinskii, V.N, Zavadskaya M.I., and Litvinovskaya, R.P. 1998. A method of production of sanitated seed potato. Pat. Appl. BY. 19: 981–189.Google Scholar
  8. Choe, S., Noguchi, T., Fujioka, S., Takatsuto, S., Tissier, C.P., Gregory, B.D., Ross, A.S., Tanaka, A., Yoshida, S., and Tax, F.E. 1999. The Arabidopsis dwf7/ste1 mutant is defective in the _7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell. 11: 207–221.CrossRefPubMedGoogle Scholar
  9. Churikova, V.V. and Vladimirova, I.N. 1997. Effect of epin on activity of enzymes of oxidative metabolism of cucumber in peronosporous epiphytotia conditions. In: 4th Conference (Abstract) on Plant Growth and Development Regulators. Moscow, pp. 78.Google Scholar
  10. Clouse, S.D. 1996. Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. Plant J. 10: 1–8.CrossRefPubMedGoogle Scholar
  11. Clouse, S.D. 2002. Brassinosteroid Signal transduction: clarifying the patyway from ligand perception to gene expression. Molecular Cell. 10(5): 973–982.CrossRefPubMedGoogle Scholar
  12. Clouse, S.D. and Sasse, J.M. 1998. Brassinosteroids: essential regulators of plant growth and development. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49: 427–451.CrossRefGoogle Scholar
  13. Cutler, H.G. 1991. Brassinosteroids through the looking glass. In: Cutler HG, Yokota T, Adam G, eds. Brassinosteroids. Chemistry, bioactivity, and application. ACS Symposium Series, 474. Washington: American Chemical Society, 334–345.CrossRefGoogle Scholar
  14. Dhaubhadel, S., Browning, K.S., Gallie, D.R. and Krishna, P. 2002. Brassinosteroid functions to protect the translational machinery and heat shock protein synthesis following thermal stress. Plant J. 29(6): 681–691.CrossRefPubMedGoogle Scholar
  15. Dhaubhadel, S., Chaudhary, S., Dobinson, K.F., and Krishna, P. 1999. Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Mol. Biol. 40: 333–342.CrossRefPubMedGoogle Scholar
  16. Franěk, F., Eckschlager, T. and Kohout, L. 2003. 24-Epibrassinolide at subnanomolar concentrations modulates growth and production characteristics of a mouse hybridoma. Collect. Czech. Chem. Commun. 68: 2190–2200.CrossRefGoogle Scholar
  17. Fujioka, S. and Sakurai, A. 1997. Brassinosteroids. Nat. Prod. Rep. 14: 1–10.CrossRefPubMedGoogle Scholar
  18. Fujioka, S., Noguchi, T., Yokota, T., Takatsuto, S., and Yoshida, S. 1998. Brassinosteroids in Arabidopsis thaliana. Phytochemistry. 48: 595–599.CrossRefPubMedGoogle Scholar
  19. Geuns, J.M.C. 1978. Steroid hormones and plant growth and development. Phytochem. 17: 1–14.CrossRefGoogle Scholar
  20. Grove, M.D, Spencer, G.F, Rohwedder, W.K, Mandava, N., Worley, J.F., Warthen, J.D., Steens, G., Flippen-Anderson, J.L., and Cook, J.C. 1979. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature. 281: 216–217.CrossRefGoogle Scholar
  21. Hasan, S.A., Hayat, S., Ali, B., and Ahmad, A. 2008. 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environ. Pollut. 151: 60–66.CrossRefPubMedGoogle Scholar
  22. Haubrick, L.L. and Assmann, S.M. 2006. Brassinosteroids and plant function: some clues, more puzzles. Plant Cell Environ. 29: 446–457.CrossRefPubMedGoogle Scholar
  23. Howell, W.M., Keller, G.E., Kirkpatrick, J.D., Jenkins, R.L., Hunsinger, R.N. and McLaughlin, E.W. 2007. Effects of the plant steroidal hormone, 24-epibrassinolide, on the mitotic index and growth of onion (Allium cepa) root tips. Genet. Mol. Res. 6 : 50–58.PubMedGoogle Scholar
  24. Ikekawa, N., and Zhao, Y.J. 1991. Application of 24-epibrassinolide in agriculture. In: Brassinosteroids. Chemistry, bioactivity, and applications (Eds. H.G., Cutler, T. Yokota and G. Adam), ACS Symposium Series, American Chemical Society, 280-291, Washington.Google Scholar
  25. Iwasaki, T. and Shibaoka, H. 1991. Brassinosteroids act as regulators of tracheary-element differentiation in isolated Zinnia mesophyll cells. Plant Cell Physiol. 32: 1007–1014.Google Scholar
  26. Jager, C.E., Symons, G.M., Ross, J.J., and Reid, J.B. 2008. Do brassinosteroids mediate the water stress response? Physiol. Plant. 133(2): 417–425.CrossRefPubMedGoogle Scholar
  27. Janeczko, A., Hura, K. and Skoczowski, A. 2009. Temperature-dependent impact of 24-epibrassinolide on the fatty acid composition and sugar content in winter oilseed rape callus. Acta Physiol Plant. 31(1): 71–79.CrossRefGoogle Scholar
  28. Janeczko, A., Koscielniak, J., Pilipowicz, M., Szarek-Lukaszewsa, G. and Skoczowspi, A. 2005. Protection of winter rape photosystem II by 24-epibrassinolide under cadmium stress. Photosynthetica. 43: 293–298.CrossRefGoogle Scholar
  29. Jiang, C., Baehrecke, E.H. and Thummel, C.S. 1997. Steroid regulated programmed cell death during Drosophila metamorphosis. Development 124: 4673–4683.PubMedGoogle Scholar
  30. Jochova, J., Zakeri, Z. and Lockshin, R.A. 1997. Rearrangement of the tubulin and actin cytoskeleton during programmed cell death in Drosophila salivary glands. Cell Death Differ. 4: 140–149.CrossRefPubMedGoogle Scholar
  31. Kagale, S., Divi, U.K., Krochko, J.E., Keller, W.A. and Krishna, P. 2007. Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta. 225: 353–364.CrossRefPubMedGoogle Scholar
  32. Kauschmann, A., Adam, G., Jessop, A., Konecz, C., Szekeres, M., Voigt, B., Willmitzer, L. and Altmann, T. 1996. Genetic evidence for an essential role of a brassinosteroids in plant development. Proc. Plant Growth Regul. Soc. Am. 23: 13.Google Scholar
  33. Khripach, V., Zhabinskii, V.N. and DeGroot. A. 2000. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann. Bot. 86: 441–447CrossRefGoogle Scholar
  34. Krishna, P. 2003. Brassinosteroids- mediated stress responses. J.Plant Grow.Regul. 22: 289–297.CrossRefGoogle Scholar
  35. Lee, C.Y. and Baehrecke, E.H. 2001. Steroid regulation of autophagic programmed cell death during development. Development 128: 1443–1455.PubMedGoogle Scholar
  36. Li, L. and Van Staden, J. 1998. Effects of plant growth regulators on the antioxidant system in callus of two maize cultivars subjected to water stress. Plant Growth Regul. 24: 55–66.CrossRefGoogle Scholar
  37. Malìková, J., Swaczynová, J., Kolář, Z. and Strnad, M. 2008. Anticancer and antiproliferative activity of natural brassinosteroids. Phytochemistry. 69: 418–426.CrossRefPubMedGoogle Scholar
  38. Mandava, N.B. 1988. Plant growth- promoting brassinosteroids. Annu. Rev. Pl. Physiol. Pl. Mol. Biol. 39: 23–52.CrossRefGoogle Scholar
  39. Mashkovskii, M.D. 1997. Medicinal Substances. Topsing, kharkov.Google Scholar
  40. Michelini, F.M., Berra, A., Alché, L.E. 2008. The in vitro immunomodulatory activity of a synthetic brassinosteroid analogue would account for the improvement of herpetic stromal keratitis in mice. J. Steroid Biochem. Mol. Biol. 108: 164–170.CrossRefPubMedGoogle Scholar
  41. Michelini, F.M., Ramirez, J.A., Berra, A., Galagovsky, L.R., and Alché, L.E. 2004 In vitro and in-vivo antiherpetic activity of three new synthetic brassinosteroids analogues. Steroids. 69: 713–720.PubMedGoogle Scholar
  42. Mittler, R. 2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11(1): 15–19.CrossRefPubMedGoogle Scholar
  43. Müssig, C. and Altmann, T. 2003. Genomic brassinosteroid effects. J. Plant Growth Regul. 22: 313–324.CrossRefPubMedGoogle Scholar
  44. Mussig, C., Fischer, S., and Altmann, T. 2002. Brassinosteroid-regulated gene expression. Plant Physiol. 129:1241–1251.CrossRefPubMedGoogle Scholar
  45. Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., Sekimata, K., Takatsuto, S., Yamaguchi, I., and Yoshida, S. 2003 Brassinosteroids function in a broad range of disease resistance in tobacco and rice. Plant J. 33(5): 887–898.CrossRefPubMedGoogle Scholar
  46. Nomura, T., Kitasaka, Y., Takatsuto, S., Reid, J.B., Fukami, M., and Yokota, T. 1999. Brassinosteroid/Sterol synthesis and plant growth as acted by lka and lkb mutations of Pea. Plant Physiol. 119: 1517–1526.CrossRefPubMedGoogle Scholar
  47. Ohri, P., Bhardwaj, R., and Khurma, U.R. 2002. Role of brassinolide on juvenile emergence of Meloidogyne incognita. Int. J. Nematol. 12: 175–178.Google Scholar
  48. Ohri, P., Kaur, S., Bhardwaj, R., and Khurma, U.R. 2004. Role of brsssinosteroids on juvenile emergence of Meloidogyne incognita. Int. J. Nematol. 34(2): 165–168.Google Scholar
  49. Ohri, P., Sohal, S. K., Bhardwaj, R., and Khurma, U.R. 2008 Studies on on the root-knot nematode, Meloidogyne incognita (Kofoid & White) Chitwood under the influence of 24-epibrassinolide. Ann. Plant Protec. Sci. 16(1):198–202.Google Scholar
  50. Ohri, P., Sohal, S.K., Bhardwaj, R., and Khurma, U.R. 2005. Effects of 28- homobrassinolide and 24-epibrassinolide on the development of Meloidogyne incognita. Int. J. Nematol. 15(1): 43–47.Google Scholar
  51. Ohri, P., Sohal, S.K., Bhardwaj, R., and Khurma, U.R. 2007. Morphogenetic and biochemical responses of the root-knot nematode, Meloidogyne incognita (Kofoid & White) Chitwood to isolated brassinosteroids. Ann. Pl. Protec. Sci. 15 (1): 226–231.Google Scholar
  52. Ozdemir, F., Bor, M., Demiral, T., and Turkan, I. 2004. Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regul. 42: 203–211.CrossRefGoogle Scholar
  53. Pshenichnaya, L.A., Khripach, V.A., Volynets, A.P., Prokhorchik, R.A., Manzhelesova, N.E. and Morozik, G.V. 1997. Brassinosteroids and resistance of barley plants to leaf diseases. In: Problems of Experimental Botany, Belorussian Science, Minsk. pp. 210-217.Google Scholar
  54. Rao, S.S.R., Vardhini, B.V., Sujatha, E., and Anuradha, S. 2002. Brassinosteriods- A new class of phytohormones. Curr. Sci., 82: 1239–1245.Google Scholar
  55. Riddiford, L.M. 1993. Hormones and Drosophila development. In The Development of Drosophila melanogaster (eds. M. Bate and A. Martinez-Arias), 899–939. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  56. Roberts, K., and McCann, M.C. 2000. Xylogenesis: The birth of a corpse. Curr. Opin. Plant. Biol. 3: 517–522.CrossRefPubMedGoogle Scholar
  57. Robertson, C.W. 1936. The metamorphosis of Drosophila melanogaster, including an accurately timed account of the principal morphological changes. J. Morphol. 59: 351–399.CrossRefGoogle Scholar
  58. Rodkin, A.I., Konovalova, G.I. and Bobrick, A.O. 1997. Efficiency of application of biologically active substances in primary breeding of potato. In: 4th Conference (Abstract) on Plant Growth and Development Regulators, Moscow. pp. 317-318.Google Scholar
  59. Romanutti, C., Castilla, V., Coto, C.E., and Wachsman, M.B. 2007. Antiviral effect of a synthetic brassinosteroid on the replication of vesicular stomatitis virus in vero cells. Inter. J. Antimicrob. Agents. 29: 311–316.CrossRefGoogle Scholar
  60. Rupprecht, R., Holsboer, F. 1999. Neuroactive steroids: mechanisms of action and neuropsychopharmacological perspectives. Trends in Neurosciences 22: 410–416CrossRefPubMedGoogle Scholar
  61. Sasse, J.M. 1999. Physiological actions of brassinosteroids. In: Brassinosteroids: Steroidal plant hormones. (Eds. A. Sakurai, T. Yokota and S.D. Clouse). Springer-Verlag, Tokyo, pp. 137-161.Google Scholar
  62. Sasse, J.M. 2003. Physiological Actions of Brassinosteroids: An Update. J. Plant Growth Regul. 22: 276–288.CrossRefPubMedGoogle Scholar
  63. Sasse, J.M., Smith, R. and Hudson, I. 1995. Effect of 24-epibrassinolide on germination of seeds of Eucalyptus camaldulensis in saline conditions. Proc. Plant Growth Regul. Soc. Amer. 22:136–141.Google Scholar
  64. Schmidt, J., Richter, K., Voigt, B., Adam, G., 2000. Metabolic transformation of the brassinisteroid 24-epi-castasterone by the cockroach Periplaneta americana. Z. Naturforsch 55 (c), 233–239.Google Scholar
  65. Sharma, P. and Bhardwaj, R. 2007a. Effect of 24-Epibrassinolide on seed germination, seedling growth and heavy metals uptake in Brassica juncea L. Gen. Appl. Plant Physiology. 32: 1–2.Google Scholar
  66. Sharma, P. and Bhardwaj, R. 2007b. Effects of 24-Epibrassinolide on growth and metal uptake in Brassica juncea L. under copper metal stress. Acta Physiol. Plant. 29: 259–263.CrossRefGoogle Scholar
  67. Smagghe, G., Decombel, L., Carton, B., Voight, B., Adam, G. and Tirry, L. 2002. Action of brassinosteroids in the cotton leafworm Spodoptera littoralis. Insect Biochem. Mol. Biol. 32: 199–204.CrossRefGoogle Scholar
  68. Sondhi, N., Bhardwaj, R., Kaur, S., Kumar, N. and Singh, B. 2008. Isolation of 24-epibrassinolide from leaves of Aegle marmelos and evaluation of its antigenotoxicity employing Allium cepa chromosomal aberration assay. Plant Growth Regul. 54: 217–224.CrossRefGoogle Scholar
  69. Swaczynová, J., Šíša, M., Hniličková, J., Kohout, L., Strnad, M. 2006. Synthesis, biological, immumological and anticancer properties of a new brassinosteroid ligand. Polish J. Chem. 80: 629–635.Google Scholar
  70. Szekeres, M., Nameth, K., Kalmar, Z.K., Mathur, J., Kauscrman, A., Altmann, T., Redei, G.P., Nagy, F., Scrall, J. and Koncz, C. 1996. Brassinosteroids rescue the deficiency of CYP 90, a cytochrome P450, controlling cell elongation and de-etiolating in Arabidopsis. Cell. 85: 171–182.CrossRefPubMedGoogle Scholar
  71. Talarico, L.B.,Castilla, V., Ramirez, J.A., Galagovsky, L.R. and Wachsman, M.B. 2006. Synergistic in vitro Interactions between (22S,23S)-3-Bromo-5,22,23-Trihydroxystigmastan-6-one and Acyclovir or Foscarnet against Herpes simplex Virus Type 1. Chemotherapy. 52:38–42.CrossRefPubMedGoogle Scholar
  72. Thummel, C.S., and Chory, J. 2002. Steroid signaling in plants and insects-common themes, different pathways. Genes and Development. 16: 3113–3129.CrossRefPubMedGoogle Scholar
  73. Vasyukova, N.I., Chalenko, G.I., Kaneva, I.M., Khripach, V.A., Ozeretskovskaya, O.L. 1994. Brassinosteroids and potato late blight. Prikl. Biokhim. Micribiol. 30: 464–470.Google Scholar
  74. Volynets, A.P., Pschenichnaya, L.A., Manzhelesova, N.E., Morozik, G.V. and Khripach, V.A. 1997a. Method of protection of barley plants from leave disease. Pat. BY. 970,680Google Scholar
  75. Volynets, A.P., Pschenichnaya, L.A., Manzhelesova, N.E., Morozik, G.V. and Khripach, V.A. 1997b. The nature of protective action of 24-epibrassinolide on barley plants. Proc. Plant growth Regul. Soc. Am. 24: 133–137.Google Scholar
  76. Von Kalm, L., Fristrom, D. and Fristrom, J. 1995. The making of a fly leg: A model for epithelial morphogenesis. Bioessays. 17: 693–702CrossRefPubMedGoogle Scholar
  77. Wachsman, M.B., Castilla, V., Talarico, L. B., Ramirez, J.A., Galagovsky, L.R., Coto, C.E. 2004a. Antiherpetic mode of action of (22S,23S)-3-bromo-5,22,23-trihydroxystigmastan-6-one in vitro. Inter. J. Antimicrob. Agents. 23: 524–526.CrossRefGoogle Scholar
  78. Wachsman, M.B., Lopez, E.M., Ramirez, J.A., Galagovsky, L.R. and Coto, C.E.. 2000. Antiviral effect of brassinosteroid against herpes virus and arena viruses. Anti. Chem. Chemotherapy. 11: 71–77.Google Scholar
  79. Wachsman, M.B., Ramirez, J.A., Galagovsky, L.R., and Coto, C.E. 2002. Antiviral activity of brassinosteroid derivatives against measles virus in cell cultures. Anti. Chem. Chemotherapy. 13: 61–66.Google Scholar
  80. Wachsman, M.B., Ramirez, J.A., Talarico, L.B., Galagovsky, L.R., Coto, C.E. 2004b. Antiviral activity of natural and synthetic brassinosteroids. Curr. Med. Chem.-Anti-Infective Agents. 3: 163–179.CrossRefGoogle Scholar
  81. Xia, X.J., Huang, Y.Y., Wang, L., Huang, L.F., Yu, Y.L., Zhou, Y.H., Yu, J.Q. 2006 Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. Pestic. Biochem. Physiol. 86(1): 42–48.CrossRefGoogle Scholar
  82. Yamamoto, R., Fujioka, S., Demura, T., Takatsuto, S., Yoshida, S., and Fukuda, H. 2001. Brassinosteroid levels increase drastically prior to morphogenesis of tracheary elements. Plant Physiol. 125: 556–563.CrossRefPubMedGoogle Scholar
  83. Yokota, T., Arima, M. and Takahashi, N. 1982. Castasterone, a new phytosterol with plant- hormone potency from chestnut insect gall. Tetrahed. Lett. 23: 1275–1278.CrossRefGoogle Scholar
  84. Yokota, T., Higuchi, K., Takahashi, N., Kamuro, Y., Watanabe, T. and Takatsuto, S. 1998. Identification of brassinosteroids with epimerization substituents and /or the 23-oxo group in pollen and anthers of Japanese cedar. Biosci. Biotech. Biochem. 62: 526–531.CrossRefGoogle Scholar
  85. Yokota, T., Normura, T. and Nakayama, M. 1997. Identification of brassiaosteraids that appear to be derived from campesterol and cholesterol in tomato shoots. Pl. Cell Physiol. 38: 1291–1294.Google Scholar
  86. Zullo, M.A.T., Adam, G. 2002. Brassinosteroids phytohormones–structure bioactivity and applications. Braz. J. Plant Physiol. 14: 143–181.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • R. Bhardwaj
    • 1
  • N. Arora
    • 1
  • P. Uppal
    • 1
  • I. Sharma
    • 1
  • M. K. Kanwar
    • 1
  1. 1.Department of Botanical & Environmental SciencesGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations