A Cognitive Science Perspective on Legal Ontologies

Part of the Law, Governance and Technology Series book series (LGTS, volume 1)


We can trace five origins of ontology engineering, and all five still play a major role in ontology engineering. Each of these roots gives a different perspective on content and use of ontologies. Philosophical ontology is concerned with “reality”; Information science with systematic terminology; Artificial Intelligence (AI) with terminological knowledge, Knowledge Engineering with the specification of knowledge bases, and Information Management with semantics. Associated with these roots, the applications differ and range from analytic clarification to automated reasoning. Also mismatches between formalism and aim occur frequently. These mismatches can often be traced to an unclear distinction between knowledge and semantics. We explain this difference in Section 4.3 using a simple cognitive architecture for natural language production. A Cognitive Science perspective is however well suited where top ontologies try to cover the core concepts of common sense, as a wealth of empirical studies have become available on the content of our “knowledge instincts”. We present an example on the modeling of spatial concepts and refer to our still ongoing work on a common-sense based core ontology for legal domains: LKIF-Core (Hoekstra et al. 2007; Hoekstra 2009).


  1. Bechhofer, S., F. van Harmelen, J. Hendler, I. Horrocks, D.L. McGuinness, P.F. Patel-Schneider, L.A. Stein. OWL Web Ontology Language Reference. W3C Recommendation, World Wide Web Consortium, February 2004. URL http://www.w3.org/TR/owl-ref/. In M. Dean, G. Schreiber (Eds.).
  2. Berners-Lee, T. (1999). Weaving the Web: The Past, Present and Future of the World Wide Web. Orion Business Books, London.Google Scholar
  3. Breuker, J., R. Hoekstra. (2004). Core Concepts of Law: Taking Common-Sense Seriously. In A.C. Varzi, L. Vieu (Eds.) Proceedings of Formal Ontologies in Information Systems (FOIS-2004. IOS-Press, 210–221.Google Scholar
  4. Breuker, J., W. Van De Velde (1994). CommonKADS Library for Expertise Modeling: Reusable Problem Solving Components. IOS-Press/Ohmsha, Amsterdam/Tokyo.Google Scholar
  5. Breuker, J., R. Hoekstra, A. Boer, K. van den Berg, R. Rubino, G. Sartor, M. Palmirani, A. Wyner, T. Bench-Capon (2007). OWL Ontology of Basic Legal Concepts (LKIF-Core). Deliverable 1.4, Estrella, http://www.estrellaproject.org.
  6. Casellas, N. (2010). Legal Ontology Engineering. Springer, New York, NY.Google Scholar
  7. Ecco, U. (1997). The Search for the Perfect Language. Blackwell Publishers, Oxford.Google Scholar
  8. Forbus, K. (2008). Qualitative Modeling. In F. van Harmelen, V. Lifs-chitz, B. Porter (Eds.) Handbook of Knowledge Representation. Elsevier, San Diego, CA.Google Scholar
  9. Gangemi, A., N. Guarino, C. Masolo, A. Oltramari, L. Schneider. (2002). Sweetening Ontologies With DOLCE. In A. Gomez-Perez, V.R. Benjamins (Eds.) Proceedings of the EKAW-2002. Springer, Heidelberg, 166–181.Google Scholar
  10. Gruber, T.R. (1993). A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition, 5: 199–220.CrossRefGoogle Scholar
  11. Hamscher, W.C., L. Console, J. de Kleer (Eds.) (1992). Readings in Model-Based Diagnosis. Morgan Kaufmann, San Mateo, CA.Google Scholar
  12. Hauser, M. (2006). Moral Minds: The Nature of Right and Wrong. Harper Collins, New York, NY.Google Scholar
  13. Hayes, P.J. (1985). Naive Physics I: Ontology for Liquids. In J.R. Hobbs, R.C. Moore (Eds.) Formal Theories of the Common Sense World. Ablex Publishing Corporation, Norwood, 71–108.Google Scholar
  14. Hoekstra, R. (2009). Ontology Representation: Design Patterns and Ontologies That Make Sense. IOS Press, Amsterdam.Google Scholar
  15. Hoekstra, R., J. Breuker (2008). Polishing Diamonds in OWL 2. In A. Gangemi, J. Euzenat (Eds.) Proceedings of the 16th International Conference on Knowledge Engineering and Knowledge Management (EKAW 2008), LNAI/LNCS. Springer, Berlin.Google Scholar
  16. Hoekstra, R., J. Breuker, M. Di Bello, A. Boer (2007). The LKIF Core Ontology of Basic Legal Concepts. In P. Casanovas, M.A. Biasiotti, E. Francesconi, M.T. Sagri (Eds.) Proceedings of the Workshop on Legal Ontologies and Artificial Intelligence Techniques (LOAIT 2007), June 2007.Google Scholar
  17. Horrocks, I., P.F. Patel-Schneider, F. Van Harmelen (2003). From shiq and RDF to OWL: The Making of a Web Ontology Language. Journal ofWeb Semantics: Science, Services and Agents on the World Wide Web Semantics, 1: 7–26.CrossRefGoogle Scholar
  18. Lakoff, G. (1987). Women, Fire and Dangerous Things. University of Chicago Press, Chicago, IL.Google Scholar
  19. Lenat, D.B. (1995). CYC: A Large-Scale Investment in Knowledge Infrastructure. Communications of the ACM, 38(11): 33–38.CrossRefGoogle Scholar
  20. Levelt, W.J.M. (1993). Speaking. Cambridge University Press, Cambridge, MA.Google Scholar
  21. McCarthy, J., P. Hayes. (1969). Some Philosophical Problems from the Standpoint of Artificial Intelligence. In B. Meltzer, D. Michie, M. Swann (Eds.) Machine Intelligence vol. 4. Edinburgh University press, Edinburgh, 463–502.Google Scholar
  22. McManus, C. (2002). Right Hand, Left Hand. Weidenfeld and Nicolson, London.Google Scholar
  23. Pease, A., I. Niles. (2002). IEEE Standard Upper Ontology: A Progress Report. Knowledge Engineering Review, 17: 65–70. Special Issue on Ontologies and Agents.Google Scholar
  24. Pinker, S. (2007). The Stuffofthought. Allen Lane, London.Google Scholar
  25. Schreiber, A.Th., B.J. Wielinga, J.A. Breuker (Eds.) (1993). KADS: A Principled Approach to Knowledge-Based System Development, vol. 11 of Knowledge-Based Systems Book Series. Academic Press, London. ISBN 0-12-6290407.Google Scholar
  26. Schreiber, G., H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt, W. Van den Velde, B. Wielinga (2000). Knowledge Engineering and Managament: The CommonKADS Methodology. MIT Press, Cambridge, MA.Google Scholar
  27. Sowa, J.F. (2000). Knowledge Representation: Logical Philosophical, and Computational Foundations. Brooks Cole Publishing Co, Pacific Grove, CA.Google Scholar
  28. van de Ven, S., J. Breuker, R. Hoekstra, L. Wortel (2008). Automated Legal Assessment in Owl 2. In Legal Knowledge and Information Systems. Jurix 2008: The 21st Annual Conference, Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam, December 2008.Google Scholar
  29. Van Heijst, G., A.Th. Schreiber, B.J. Wielinga (1997). Using Explicit Ontologies for kbs Development. International Journal of Human-Computer Studies, 46(2/3): 183–292.Google Scholar
  30. Weld, D., J. de Kleer (Eds.) (1990). Readings in Qualitative Reasoning About Physical Systems. Morgan Kaufman, San Mateo CA.Google Scholar
  31. West, M. (2004). Some Industrial Experiences in the Development and Use of Ontologies Some Industrial Experiences in the Development and Use of Ontologies. In Proceedings of EKAW-2004 workshop on Core Ontologies.Google Scholar
  32. Wilkins, J. (1668). An Essay Towards the Real Character and a Philosophical Language. Gellibrand, London.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Leibniz Center for Law, University of AmsterdamAmsterdamThe Netherlands
  2. 2.AI Department, VU UniversityAmsterdamThe Netherlands

Personalised recommendations