Light as a Source of Information and Energy in Zooxanthellate Corals

  • Zvy DubinskyEmail author
  • Paul Falkowski


Reef-building corals live in a mutualistic symbiosis with endocellular microalgae, the zooxanthellae that provide much of their animal host’s metabolic energy needs through translocation of photosynthate. That dependence sets a limit on the depth distribution of zooxanthellate corals, commonly restricting it to depths where light exceeds 0.5% of its subsurface intensity. We review the various ways allowing corals to span over two orders of magnitude in the underwater light field over their bathymetric distribution range. These consist of adjustments by both components of the holobiont, the coral host, and its algal symbionts, and also affect the flows of energy and matter between them. Animal and algae optimize light harvesting and utilization on the molecular, biochemical, biophysical, metabolic, behavioral, and architectural levels. These photoacclimative responses result in corals exposed to the full blast of tropical sun being able to use such superabundant energy, while being spared from its destructive consequences. At the opposite extreme, corals under dim light make the most efficient and parsimonious use of it. We also bring up to date the ways in which moonlight triggers coral spawning cycles and also illustrate the synergy between visible light and UV in the photoacclimation process.


Underwater light photoacclimation spawning lunar cycle colony morphology photoprotection 


  1. Achituv Y, Dubinsky Z (1990) Evolution and zoogeography of coral reefs ecosystems of the world. In: Dubinsky Z (ed) Coral reefs. Elsevier, AmsterdamGoogle Scholar
  2. Babcock RC, Bull GD, Harrison PL, Heyward AJ, Oliver JK, Wallace CC, Willis BL (1986) Synchronous spawning of 105 sclereactinian coral species on the Great Barrier Reef. Mar Biol 90:379–394CrossRefGoogle Scholar
  3. Babcock RC, Wills BL, Simpson CJ (1994) Mass spawning of corals on a high latitude coral reef. Coral Reefs 13:161–169CrossRefGoogle Scholar
  4. Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689CrossRefGoogle Scholar
  5. Bou-Abdallah F, Chasteen ND, Lesser MP (2006) Quenching of superoxide radicals by green fluorescent protein. Biochim Biophys Acta 1760:1690–1695Google Scholar
  6. Brandt J (1883) Über die morphologische und physiologische bedeutung des chlorophylls bei tieren. Zool Stn Neapol 4:191–302Google Scholar
  7. Cohen I (2008) Strategies of the coral Stylophora pistillata to acclimate to a “new depth”. MSc thesis, Bar-Ilan University, Ramat-Gan, IsraelGoogle Scholar
  8. Dubinsky Z (2009) The light from the darkness, responses of zooxanthellate corals to the underwater light field. Galaxea 11:75–79CrossRefGoogle Scholar
  9. Dubinsky Z, Berman-Frank I (2001) Primary production and population growth in photosynthesizing organisms in aquatic ecosystems. Aquat Sci 63:4–17CrossRefGoogle Scholar
  10. Dubinsky Z, Jokiel P (1994) The ratio of energy and nutrient fluxes regulates the symbiosis between zooxanthellae and corals. Pac Sci 48:313–324Google Scholar
  11. Dubinsky Z, Falkowski PG, Porter J, Muscatine L (1984) The absorption and utilization of radiant energy by light and shade-adapted colonies of the hermatypic coral, Stylophora pistillata. Proc R Soc Lond B 222:203–214CrossRefGoogle Scholar
  12. Eden N, Fomina I, Bil K, Titlyanov E, Dubinsky Z (1996) Photosynthetic capacity and composition of 14C fixation products in symbiotic zooxanthellae of Stylophora pistillata in vivo under different light and nutrient conditions. In: Steinberger Y (ed) Preservation of our world in the wake of change, vol 6A/B. ISEEQS Publication, Jerusalem, pp 462–463Google Scholar
  13. Einbinder S, Mass T, Brokovich E, Dubinsky Z, Erez Y, Tchernov D (2009) To eat or to sunbathe: morphological changes in the coral Stylophora pistillata along its whole bathymetrical distribution. Mar Ecol Prog Ser 381:167–174CrossRefGoogle Scholar
  14. Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289:172–174CrossRefGoogle Scholar
  15. Falkowski PG, Raven JA (2007) Aquatic photosynthesis. Princeton University Press, PrincetonGoogle Scholar
  16. Falkowski PG, Dubinsky Z, Muscatine L, Porter J (1984) Light and the bioenergetics of a symbiotic coral. Bioscience 34:705–709CrossRefGoogle Scholar
  17. Falkowski PG, Dubinsky Z, Wyman K (1985) Growth-irradiance relationships in phytoplankton. Limnol Oceanogr 30:311–321CrossRefGoogle Scholar
  18. Falkowski PG, Jokiel PL, Kinzie RA (1990) Irradiance and corals. In: Dubinsky Z (ed) Coral reefs. Ecosystems of the world. Elsevier Science, Amsterdam, pp 89–107Google Scholar
  19. Falkowski PG, McClosky L, Muscatine L, Dubinsky Z (1993) Population control in symbiotic corals. Bioscience 43:606–611CrossRefGoogle Scholar
  20. Fan TY, Li JJ, Ie SX, Fang LS (2002) Lunar periodicity of larval release by pocilloporid corals in southern Taiwan. Zool Stud 41:288–294Google Scholar
  21. Fautin DG (2002) Reproduction of Cnidaria. Can J Zool 80:1735–1754CrossRefGoogle Scholar
  22. Fricke HW, Vareschi E, Schlichter D (1987) Photoecology of symbiotic coral Leptoseris fragilis in the Red Sea twilight zone (an experimental study by submersible). Oceanologia 73:371–381CrossRefGoogle Scholar
  23. Gorbunov MY, Falkowski PG (2002) Photoreceptors in the cnidarian hosts allow symbiotic corals to sense blue moonlight. Limnol Oceanogr 47:309–315CrossRefGoogle Scholar
  24. Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Ecosystems of the world. Coral reefs. Elsevier Science, Amsterdam, pp 133–207Google Scholar
  25. Iluz D, Vago R, Chadwick NE, Hoffman R, Dubinsky Z (2008) Seychelles lagoon provides corals a refuge from bleaching. Res Lett Ecol. Article ID 281038Google Scholar
  26. Jerlov NG (1951) Optical studies of ocean water. Rep Swedish Deep-Sea Exped 3:73–97Google Scholar
  27. Jerlov NG (1964) Optical classification of ocean water. Physical aspects of light in the sea. University of Hawaii Press, Honolulu, pp 45–49Google Scholar
  28. Jerlov NG (1976) Applied optics. Elsevier, AmsterdamGoogle Scholar
  29. Jokiel PL (1985) Lunar periodicity of planula release in reef coral Pocillopora damicornis in relation to various environmental factors. In: Proceedings of the 5th international coral reef congress, vol 4, Tahiti, pp 307–312Google Scholar
  30. Jokiel PL, Ito RY, Liu PM (1985) Night irradiance and synchronization of lunar spawning of larvae in the reef coral Pocillopora damicornis (Linnaeus). Mar Biol 88:167–174CrossRefGoogle Scholar
  31. Karako S, Stambler N, Dubinsky Z (2002) The taxonomy and evolution of the zooxanthellae-coral symbiosis. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer, Dordrecht, pp 539–557Google Scholar
  32. Karako-Lampert S, Katcoff DJ, Achituv Y, Dubinsky Z, Stambler N (2005) Responses of Symbiodinium microadriaticum clade B to different environmental conditions. J Exp Mar Biol Ecol 318:11–20CrossRefGoogle Scholar
  33. Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, London/New YorkCrossRefGoogle Scholar
  34. Koren S, Dubinsky Z, Chomsky O (2008) Induced bleaching of Stylophora pistillata by darkness stress and its subsequent recovery. In: Proceedings of the 11th international coral reef symposium, Ft. Lauderdale, 7–11 July 2008Google Scholar
  35. Lampert-Karako S, Stambler N, Katcoff DJ, Achituv Y, Dubinsky Z, Simon-Blecher N (2008) Effects of depth and eutrophication on the zooxanthella clades of Stylophora pistillata from the Gulf of Eilat (Red Sea). Aquat Conserv 18:1039–1045CrossRefGoogle Scholar
  36. Levy O, Achituv Y, Yacobi YZ, Stambler N, Dubinsky Z (2006a) The impact of spectral composition and light periodicity on the activity of two antioxidant enzymes (SOD and CAT) in the coral Favia favus. J Exp Mar Biol Ecol 328:35–46CrossRefGoogle Scholar
  37. Levy O, Achituv Y, Yacobi YZ, Dubinsky Z, Stambler N (2006b) Diel ‘tuning’ of coral metabolism: physiological responses to light cues. J Exp Biol 209:273–283CrossRefGoogle Scholar
  38. Levy O, Appelbaum L, Leggat W, Gothlif Y, Hayward DC, Miller DJ, Hoegh-Guldberg O (2007) Light-responsive cryptochromes from a simple multicellular animal, the coral Acropora millepora. Science 318:467–470CrossRefGoogle Scholar
  39. Lin C, Shalitin D (2003) Cryptochrome structure and signal transduction. Annu Rev Plant Biol 54:469–496CrossRefGoogle Scholar
  40. Loya Y (2004) The coral reefs of Eilat – past, present and future: three decades of coral community structure studies. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, pp 1–34Google Scholar
  41. Mass T, Einbinder S, Brokovich E, Shashar N, Vago R, Erez J, Dubinsky Z (2007) Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar Ecol Prog Ser 334:93–102CrossRefGoogle Scholar
  42. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973CrossRefGoogle Scholar
  43. McGuire MP (1998) Timing of larval release by Porites astreoides in the northern Florida Keys. Coral Reefs 17:369–375CrossRefGoogle Scholar
  44. Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460CrossRefGoogle Scholar
  45. Oliver JK, Babcock RC, Harrison PL, Willis BL (1988) Geographic extent of mass coral spawning: clues to ultimate causal factors. In: Proceedings of the 6th international coral reef symposium, vol 2, Townsville, pp 853–859Google Scholar
  46. Pieribone V, Gruber DF (2005) A glow in the dark. The Belknap Press/Harvard University Press, Cambridge, MA/LondonGoogle Scholar
  47. Richmond RH (1997) Reproduction and recruitment in corals: critical links in the persistence of reefs. In: Birkeland C (ed) Life and death of coral reefs. Chapman and Hall, New York, pp 175–197Google Scholar
  48. Richmond RH, Hunter CL (1990) Reproduction and recruitment of corals - comparisons among the Caribbean, the tropical Pacific, and the Red Sea. Mar Ecol Prog Ser 60:185–203CrossRefGoogle Scholar
  49. Rinkevich B, Loya Y (1979) The reproduction of the Red Sea coral Stylophora pistillata II. Synchronization in breeding and seasonality of planulae shedding. Mar Ecol Prog Ser 1:145–152CrossRefGoogle Scholar
  50. Schumacher H, Zibrowius H (1985) What is hermatypic? A redefinition of ecological groups in corals and other organisms. Coral Reefs 4:1–9CrossRefGoogle Scholar
  51. Shlesinger Y, Loya Y (1985) Coral community reproductive patterns: Red Sea versus the Great Barrier Reef. Science 228:1333–1335CrossRefGoogle Scholar
  52. Shlesinger Y, Goulet TL, Loya Y (1998) Reproductive patterns of scleractinian corals in the northern Red Sea. Mar Biol 132:691–701CrossRefGoogle Scholar
  53. Stambler N, Dubinsky Z (2005) Corals as light collectors: an integrating sphere approach. Coral Reefs 24:1–9CrossRefGoogle Scholar
  54. Stoddart DR (1969) Ecology and morphology of recent coral reefs. Biol Rev 44:433–498CrossRefGoogle Scholar
  55. Szmant-Froelich A, Reutter M, Riggs L (1985) Sexual reproduction of Favia fragum (Esper): lunar patterns of gametogenesis, embryogenesis and planulation in Puerto Rico. Bull Mar Sci 37:880–892Google Scholar
  56. Tanner JE (1996) Seasonality and lunar periodicity in the reproduction of Pocilloporid corals. Coral Reefs 15:59–66Google Scholar
  57. Titlyanov EA, Leletkin VA, Dubinsky Z (2000) Autotrophy and predation in the hermatypic coral Stylophora pistillata in different light habitats. Symbiosis 29:263–281Google Scholar
  58. Zakai D, Dubinsky Z, Avishai A, Caaras T, Chadwick NE (2006) Lunar periodicity of planula release in the reef-building coral Stylophora pistillata. Mar Ecol Prog Ser 311:93–102CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.The Mina & Everard Goodman Faculty of Life SciencesBar-Ilan UniversityRamat-GanIsrael
  2. 2.Environmental Biophysics and Molecular Ecology Program, Institute of Marine and Coastal Sciences and Department of Earth and Planetary SciencesRutgers UniversityNew BrunswickUSA

Personalised recommendations