Advertisement

Reef Bioerosion: Agents and Processes

  • Aline TribolletEmail author
  • Stjepko Golubic
Chapter

Abstract

Coral reef maintenance depends on the balance between constructive and destructive forces. Constructive forces are mainly calcification and growth of corals and encrusting coralline algae. Destructive forces comprise physical, chemical, and biological erosion. Bioerosion is considered as the main force of reef degradation because physical erosion (storms) is temporary and localized, and chemical erosion is considered as negligible due to the actual ocean chemistry (Scoffin et al. 1980). Reef bioerosion affects sedimentary and skeletal carbonate substrates. It plays an important role in reef sedimentation, diversity maintenance by creating habitats and by providing food resources, and in biogeochemical cycles (recycling of dissolved Ca2+ and C). Thus, bioerosion is an integral part of the coral reef carbonate balance. The concept of bioerosion was introduced by Neumann (1966). It includes biocorrosion, which refers to destruction of carbonates by chemical means, and bioabrasion which refers to mechanical removal of carbonates by organisms (Golubic and Schneider 1979; Schneider and Torunski 1983).

Keywords

Reef bioerosion Microborers Euendoliths Cyanobacteria Microalgae Fungi Macroborers Sponges Bivalves Grazers Urchins Parrotfishes Carbonate dissolution Sedimentation Carbonate budget Reef framework Coral reefs Ocean acidification Anthropogenic factors 

References

  1. Alker AP, Smith GW, and Kim K (2001) Characterization of Aspergillus sydowii (Thom et Church), a fungal pathogen of Caribbean sea fan corals. Hydrobiologia 460:105–111CrossRefGoogle Scholar
  2. Al-Thukair AA, Golubic S (1991a) New endolithic cyanobacteria from the Arabian Gulf I. Hyella immanis sp. nov. J Phycol 27:766–780CrossRefGoogle Scholar
  3. Al-Thukair AA, Golubic S (1991b) Five new Hyella species from the Arabian Gulf. Algol Stud 64:167–197Google Scholar
  4. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. PNAS 105:17442–17446CrossRefGoogle Scholar
  5. Bathurst RGC (1966) Boring algae, micrite envelopes, and lithification of molluscan biosparites. Lpool Manchr Geol J 5:15–32Google Scholar
  6. Bak RPM (1976) The growth of coral colonies and the importance of crustose coralline algae and burrowing sponges in relation with carbonate accumulation. Neth J Sea Res 10:285–337CrossRefGoogle Scholar
  7. Bak RPM (1990) Patterns of echinoid bioerosion in two Pacific coral reef lagoons. Mar Ecol Prog Ser 66:267–272CrossRefGoogle Scholar
  8. Bentis CJ, Kaufman L, Golubic S (2000) Endolithic fungi in reef-building corals (Order: Scleractinia) are common, cosmopolitan, and potentially pathogenic. Biol Bull 198:254–260CrossRefGoogle Scholar
  9. Bellwood DR, Choat JH (1990) A functional analysis of grazing in parrotfishes (family Scaridae): the ecological implications. Environ Biol Fish 28:189–214CrossRefGoogle Scholar
  10. Bromley RG, D’Alessandro A (1990) Comparative analysis of bioerosion in deep and shallow water, Pliocene to Recent, Mediterranean Sea. Ichnos 1:43–49CrossRefGoogle Scholar
  11. Bruggemann JH, van Oppen MJH, Breeman AN (1994) Foraging by the spotlight parrotfish Sparisoma viride. I. Food selection in different, socially determined habitats. Mar Ecol Prog Ser 106:41–55CrossRefGoogle Scholar
  12. Calcinai B, Arilla A, Cerrano C, Bavestrello G (2003) Taxonomy-related differences in the excavating micro-patterns of boring sponges. J Mar Biol Ass 83:37–39Google Scholar
  13. Campbell SE (1980) Palaeoconchocelis starmachii, a carbonate boring microfossil from the Upper Silurian of Poland (425 million years old): implications for the evolution of the Bangiaceae (Rhodophyta). J Phycol 19:25–36Google Scholar
  14. Campbell SE (1982) Precambrian endoliths discovered. Nature 299:429–431CrossRefGoogle Scholar
  15. Campbell SE, Kazmierczak J, Golubic S (1979) Palaeoconchocelis starmachii gen. n., sp. n., an endolithic rhodophyte (Bangiaceae) from the Silurian of Poland. Acta Palaeontol Pol 24:405–408Google Scholar
  16. Carreiro-Silva M, McClanahan TR, Kiene WE (2005) The role of inorganic nutrients and herbivory in controlling microbioerosion of carbonate substratum. Coral Reefs 24:214–221CrossRefGoogle Scholar
  17. Carriker MR (1969) Excavation of boreholes by the gastropod, Urosalpinx: an analysis by light and scanning electron microscopy. Am Zool 9:917–933Google Scholar
  18. Cedhagen T (1994) Taxonomy and biology of Hirrokkin sarcophaga gen. et sp. n., a parasitic foraminiferan (Rosalinidae). Sarsia 79:65–82Google Scholar
  19. Chazottes V, Le Campion-Alsumard T, Peyrot-Clausade M (1995) Bioerosion rates on coral reefs: interaction between macroborers, microborers and grazers (Moorea, French Polynesia). Palaeo 113:189–198CrossRefGoogle Scholar
  20. Chazottes V, Le Campion-Alsumard T, Peyrot-Clausade M, Cuet P (2002) The effects of eutrophication-related alterations to coral reef communities on agents and rates of bioerosion (Reunion Island, Indian Ocean). Coral Reefs 21:375–390Google Scholar
  21. Cobb WR (1975) Fine structural features of destruction of calcareous substrata by the burrowing sponge Cliona celata. Trans Am Microsc Soc 94:197–202CrossRefGoogle Scholar
  22. Conand C, Heeb M, Peyrot-Clausade M, Fontaine MF (1998) Bioerosion by the sea urchin Echinometra on La Reunion reefs (Indian Ocean) and comparison with Tiahura reefs (French Polynesia). In: Mooi R, Telford M (eds) Echinoderms: San Francisco. AA Balkema, Rotterdam, pp 609–615Google Scholar
  23. Davies PJ, Hutchings PA (1983) Initial colonization, erosion and accretion on coral substrates. Experimental results, Lizard Island, Great Barrier Reef. Coral Reefs 2:27–35CrossRefGoogle Scholar
  24. Domart-Coulon IJ, Sinclair CS, Hill RT, Tambutté S, Puverel S, Ostrander GK (2004) A basidiomycete isolated from the skeleton of Pocillopora damicornis (Scleractinia) selectively stimulates short-term survival of coral skeletogenic cells. Mar Biol 144:583–592CrossRefGoogle Scholar
  25. Edinger EN, Limmon GV, Jompa J, Widjatmoko W, Heikoop JM, Risk MJ (2000) Normal coral growth rates on dying reefs: are coral growth rates good indicators of reef health? Mar Poll Bull 40:404–425CrossRefGoogle Scholar
  26. Ercegovic A (1932) Etudes écologiques et sociologiques des Cyanophycées lithophytes de la côte Yougoslave de l’ Adriatique. Bull Int Acad Youg Sci Arts Cl Sc Math Nat 26:33–56Google Scholar
  27. Evans JW (1970). Palaeontological implications of a biological study of rock boring clams (Family Pholadidae). In: Crimes TP, Harper JC (eds) Trace fossils, pp. 127–140. Geol J Special Issue 3. Seel House Press, LiverpoolGoogle Scholar
  28. Fabricius K, De’ath G, McCook L, Turak E, Williams DM (2005) Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. Mar Poll Bull 51:384–398CrossRefGoogle Scholar
  29. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432CrossRefGoogle Scholar
  30. Ferrer LM, Szmant AM (1988) Nutrient regeneration by the endolithic communities in coral skeletons. Proc 6th Int Coral Reef Symp 3:1–4. Townsville, AustraliaGoogle Scholar
  31. Fine M, Loya Y (2002) Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc R Soc Lond 269:1205–1210CrossRefGoogle Scholar
  32. Fine M, Meroz-Fine E, Hoegh-Guldberg O (2005) Tolerance of endolithic algae to elevated temperature and light in the coral Montipora monasteriata from the southern Great Barrier Reef. J Exp Biol 208:75–81CrossRefGoogle Scholar
  33. Freiwald A, Reitner J, and Krutschinna J (1997) Microbial alteration of the deep-water coral Lophelia pertusa: Early post-mortem processes. Facies 36:223–226CrossRefGoogle Scholar
  34. Garcia-Pichel F (2006) Plausible mechanisms for the boring on carbonates by microbial phototrophs. Sedim Geol 185:205–213CrossRefGoogle Scholar
  35. Gherardi DFM, Bosence DWJ (2001) Composition and community structure of the coralline algal reefs from Atol das Rocas, Suth Atlantic, Brazil. Coral Reefs 19:205–219CrossRefGoogle Scholar
  36. Glaub I, Golubic S, Gektidis M, Radtke G, Vogel K (2007) Microborings and microbial endoliths: geological implications. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam-Oxford-New York, pp 368–381Google Scholar
  37. Glaub I, Vogel K (2004) The stratigraphic record of microborings. Fossils Strata 51:126–135Google Scholar
  38. Glynn PW (1984) Widespread coral mortality and the 1982-83 El Nino event. Environ Conserv 11:133–146.Google Scholar
  39. Glynn PW (1997) Bioerosion and coral reef growth: a dynamic balance. In: Birkeland C (ed) Life and death of coral reefs. Chapman and Hall, New York, pp 68–95Google Scholar
  40. Golubic S, Schneider J (1979) Carbonate dissolution. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming elements. Elsevier, Amsterdam-Oxford-New York, pp 107–129CrossRefGoogle Scholar
  41. Golubic S, Brent G, Le Campion-Alsumard T (1970) Scanning electron microscopy of endolithic algae and fungi using a multipurpose casting-embedding technique. Lethaia 3:203–209CrossRefGoogle Scholar
  42. Golubic S, Perkins RD, Lukas KJ (1975) Boring microorganisms and microborings in carbonate substrates. In: Frey RW (ed) The study of trace fossils. Springer, Heidelberg-Berlin-New York, pp 229–259Google Scholar
  43. Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sedim Petrol 51:475–478Google Scholar
  44. Golubic S, Campbell SE, Spaeth C (1983) Kunsharzausguesse fossiler Mikroben-Bohrgaenge (Resin-casting of fossil microbial borings). Der Praeparator, Bochum 29:197–200Google Scholar
  45. Golubic S, Radtke G, Le Campion-Alsumard T (2005) Endolithic fungi in marine ecosystems. Trends Microbiol 13:229–235CrossRefGoogle Scholar
  46. Green JW, Knoll AH, Swett K (1988) Microfossils from oolites and pisolites of the Upper Proterozoic Eleonore Bay Group, central east Greenland. J Paleontol 62:835–852Google Scholar
  47. Hansen TA, Kelley PH (1995) Spatial variation of naticid gastropod predation in the Eocene of North America. Palaios 10:168–278CrossRefGoogle Scholar
  48. Harper EM (1994) Are conchiolin sheets in corbulid bivalves primarily defensive? Palaeontology 37:551–578Google Scholar
  49. Hassan M, Dullo W. -C, Fink A (1996). Assessment of boring activity in Porites lutea from Aqaba (Red Sea) using computed tomography. Proceedings of the 8th international coral reef symposium, Panama, 1996, 5Google Scholar
  50. Havenhand JN, Buttler FR, Thorndyke MC, Williamson JE (2008) Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr Biol 18:R651–R652CrossRefGoogle Scholar
  51. Hein FJ, Risk MJ (1975) Bioerosion of coral heads: inner patch reefs, Florida reef tract. Bull Mar Sci 25:133–137Google Scholar
  52. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Fresh Res 50:839–866CrossRefGoogle Scholar
  53. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefGoogle Scholar
  54. Hoey AS, Bellwood DR (2008) Cross-shelf variation in the role of parrotfishes on the Great Barrier Reef. Coral Reefs 27:27–47CrossRefGoogle Scholar
  55. Holmes KE, Edinger EN, Hariyadi, Limmon GV, Risk MJ, Limmon GV, Risk MJ (2000) Bioerosion of live massive corals and branching coral rubble on Indonesian coral reefs. Mar Pollut Bull 40:606–617CrossRefGoogle Scholar
  56. Hook JE, Golubic S, Milliman JD (1984) Micritic cement in microborings is not necessarily a shallow-water indicator. J Sedim Petrol 54:425–431Google Scholar
  57. Hubbard DK, Miller AI, Scaturo D (1990) Production and cycling of calcium carbonate in a shelf-edge reef system (St Croix, U.S.: Virgin Islands): applications to the nature of reef systems in the fossil record. J Sediment Petrol 60:335–360Google Scholar
  58. Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniwskyj N, Pratchett MS, Steneck RS, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365CrossRefGoogle Scholar
  59. Hutchings PA (1986) Biological destruction of coral reefs. Coral Reefs 4:239–252CrossRefGoogle Scholar
  60. Hutchings PA, Murray A (1982) Patterns of recruitment of polychaetes to coral substrates at Lizard Island, Great Barrier Reef – an experimental approach. Aust J Mar Fresh Res 33:1029–1037CrossRefGoogle Scholar
  61. Hutchings PA, Peyrot-Clausade M (2002) The distribution and abundance of boring species of polychaetes and sipunculans in coral substrates in French Polynesia. J Exp Mar Biol Ecol 269:101–121CrossRefGoogle Scholar
  62. IPCC, Climate Change (2007) The physical science basis. In: Solomon S et al. (eds) Contribution of working group I to the fourth assessment. Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New YorkGoogle Scholar
  63. James NP, Kobluk DR, Pemberton SG (1977) The oldest macroborers: lower Cambrian of labrador. Science 197:980–983CrossRefGoogle Scholar
  64. Kendrick B, Risk MJ, Michaelides J, Bergman K (1982) Amphibious microborers: bioeroding fungi isolated from live corals. Bull Mar Sci 32:862–867Google Scholar
  65. Kiene WE (1985) Biological destruction of experimental coral substrates at Lizard Island, Great Barrier Reef, Australia. Proc 5th Int Coral Reef Symp 5:339–344Google Scholar
  66. Kiene WE, Hutchings PA (1994) Bioerosion experiments at Lizard Island, Great Barrier Reef. Coral Reefs 13:91–98CrossRefGoogle Scholar
  67. Kleemann KH (1996) Biocorrosion by bivalves. Mar Ecol 17:145–158CrossRefGoogle Scholar
  68. Klein R, Mokady O, Loya Y (1991) Bioerosion in ancient and comtemporary corals of the genus Porites: patterns and palaeoenvironmental implications. Mar Ecol Prog Ser 77:245–251CrossRefGoogle Scholar
  69. Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifyers. In: NSF, NOAA and U.S. Geological Survey (eds) A guide for future research, report of a workshop held 18-20 April 2005, St Petersburg, pp 1–88Google Scholar
  70. Knoll AH, Golubic S, Green J, Swett K (1986) Organically preserved microbial endoliths from the Late Proterozoic of East Greenland. Nature 321:856–857CrossRefGoogle Scholar
  71. Kobluk DR, Risk MJ (1977a) Algal borings and fromboidal pyrite in Upper Ordovician brachiopods. Lethaia 10:135–143CrossRefGoogle Scholar
  72. Kobluk DR, Risk MJ (1977b) Calcification of exposed filaments of endolithic algae, micrite envelope formation and sediment production. J Sedim Petrol 47:517–528Google Scholar
  73. Kolbasov GA (2000) Lithoglyptes cornutes, new species (Cirripedia: Acrothoracica), a boring barnacle from the Seychelles, with some data on its ultrastructure. Hydrobiology 438:185–191CrossRefGoogle Scholar
  74. Kuffner IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT (2008) Decrease abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117CrossRefGoogle Scholar
  75. Laborel J, Le Campion-Alsumard T (1979) Infestation massive u squelette de coraux vivant par des Rhodophycees de type Conchocelis. C R Acad Sci Ser III 288:1575–1577Google Scholar
  76. Land LS (1979) The fate of reef derived sediment on the North Jamaican Island slope. Mar Geol 29:55–71CrossRefGoogle Scholar
  77. Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interaction with seasonal change in temperature/radiance and nutrient enrichment. J Geophys Res Oceans 110:C09S07. doi: 10.1029/2004JC002576 CrossRefGoogle Scholar
  78. Langdon C, Takahashi T, Marubini F, Atkinson MJ, Sweeney C, Aceves H, Barnet H, Chipman D, Goddard J (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem Cycles 14:639–654CrossRefGoogle Scholar
  79. Le Campion-Alsumard T (1975) Etude experimentale de la colonisation d’eclats de calcite par les cyanophycees endolithes marines. Cahiers Biol Mar 16:177–185Google Scholar
  80. Le Campion-Alsumard T (1979) Les cyanophycées endolithes marines. Systématique, ultrastructure, écologie et biodestruction. Oceanol Acta 2:143–156Google Scholar
  81. Le Campion-Alsumard T, Campbell SE, Golubic S (1982) Endoliths and the depth of the photic zone. Discussion. J Sed Petrol 52:1333–1338Google Scholar
  82. Le Campion-Alsumard T, Golubic S, Hutchings P (1995a) Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Mar Ecol Prog Ser 117:149–157CrossRefGoogle Scholar
  83. Le Campion-Alsumard T, Golubic S, Priess K (1995b) Fungi in corals: symbiosis or disease? Interaction between polyps and fungi causes pearl-like skeleton biomineralization. Mar Ecol Prog Ser 117:137–147CrossRefGoogle Scholar
  84. Lewis JB (1998) Reproduction, larval development and functional relationships of the burrowing, spionid polychaete Dipolydora armata with the calcareous hydrozoan Millepora complanata. Mar Biol 130:651–662CrossRefGoogle Scholar
  85. Lukas KJ (1978) Depth distribution and form among common microboring algae from the Florida continental shelf. Geol Soc Am 10:448Google Scholar
  86. Lukas KJ, Golubic S (1981) New endolithic cyanophytes from the North Atlantic Ocean: I. Cyanosaccus piriformis gen. et sp. nov. J Phycol 17:224–229CrossRefGoogle Scholar
  87. MacGeachy JK (1977) Factors controlling sponge boring in Barbados reef corals. Proc 3rd Int Coral Reef Symp, Miami 2:477–483Google Scholar
  88. MacIntyre IG, Prufert-Bebout L, Reid RP (2000) The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian stromatolites. Sediment 47:915–921CrossRefGoogle Scholar
  89. Magnusson SH, Fine M, Kühl M (2007) Light microclimate of endolithic phototrophs in the scleractinian corals Montipora monasteriata and Porites cylindrical. Mar Ecol Prog Ser 332:119–128CrossRefGoogle Scholar
  90. Mallela J, Perry CT (2007) Calcium carbonate budgets for two coral reefs affected by different terrestrial runoff regimes, Rio Bueno, Jamaica. Coral Reefs 26:129–145CrossRefGoogle Scholar
  91. Manzello DP, Kleypas JA, Budd DA, Eakin CM, Glynn PW, Langdon C (2008) Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world. PNAS 105:10450–10455CrossRefGoogle Scholar
  92. Mariani S, Uriz M-J, Turon X (2000) Larval bloom of the oviparous sponge Cliona viridis: coupling of larval abundance and adult distribution. Mar Biol 137:783–790CrossRefGoogle Scholar
  93. McClanahan TR, Nugues M, Mwachireya S (1994) Fish and sea urchin herbivory and competition in Kenyan coral reef lagoons: the role of the reef management. J Exp Mar Biol Ecol 184:237–254CrossRefGoogle Scholar
  94. Mills SC, Peyrot-Clausade M, Fontaine MF (2000) Ingestion and transformation of algal turf by Echinometra mathei on Tiahura fringing reef (French Polynesia). J Exp Mar Biol Ecol 254:71–84CrossRefGoogle Scholar
  95. Muller EM, Rogers CS, Spitzack AS, van Woesik R (2008) Bleaching increases likelihood of disease on Acropora palmate (Lamarck) in Hawksnest Bay, St John, US Virgin Islands. Coral Reefs 27:191–195CrossRefGoogle Scholar
  96. Mumby PJ, Chisholm JRM, Edwards AJ, Clark CD, Roark EB, Andrefouet S, Jaubert J (2001) Unprecedented bleaching-induced mortality in Porites spp. At Rangiroa Atoll, French Polynesia. Mar Biol 139:183–189CrossRefGoogle Scholar
  97. Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnol Oceanogr 11:92–108CrossRefGoogle Scholar
  98. Otter GW (1937) Rock-destroying organisms in relation to coral reefs. Scientific Reports of the Great. Barr Reef Exped 1:323–352Google Scholar
  99. Pari N, Peyrot-Clausade M, Le Campion-Alsumard T, Hutchings PA, Chazottes V, Golubic S, Le Campion J, Fontaine MF (1998) Bioerosion of experimental substrates on high islands and atoll lagoons (French Polynesia) after two years of exposure. Mar Ecol Prog Ser 166:119–130CrossRefGoogle Scholar
  100. Perry CT (1998) Grain susceptibility to the effects of microboring: implication for the preservation of skeletal carbonates. Sediment 45:39–51CrossRefGoogle Scholar
  101. Perry CT (2000) Macroboring of Pleistocene coral communities, Falmouth formation, Jamaica. Palaios 15:483–491Google Scholar
  102. Perry CT, Hepburn LJ (2008) Syn-depositional alteration of coral reef framework through bioerosion, encrustation and cementation: taphonomic signatures of reef accretion and reef depositinal events. Earth Sci Rev 86:106–144CrossRefGoogle Scholar
  103. Peyrot-Clausade M, Hutchings PA, Richard G (1992) The distribution and successional patterns of macroborers in marine Porites at different stages of degradation on the barrier reef, Tiahura, Moorea, French Polynesia. Coral Reefs 11:161–166CrossRefGoogle Scholar
  104. Peyrot-Clausade M, Chazottes V (2000) La Bioérosion récifale et son rôle dans la sédimentogénèse à Moorea (Polynésie française) et à la Réunion. Océanis 26:275–309Google Scholar
  105. Pomponi SA (1980) Cytological mechanisms of calcium carbonate excavation by boring sponges. Int Rev Cytol 65:301–319CrossRefGoogle Scholar
  106. Radtke G, Le Campion-Alsumard T, Golubic S (1996) Microbial assemblages of the bioerosional “notch” along tropical limestone coasts. Algol Stud 83:469–482Google Scholar
  107. Rasmussen KA, Frankenberg EW (1990) Intertidal bioerosion by the chiton Acanthopleura granulata; San Salvador. Bahamas Bull Mar Sci 47:680–695Google Scholar
  108. Reaka-Kudla ML, Feingold JS, Glynn W (1996) Experimental studies of rapid bioerosion of coral reefs in the Galapagos Islands. Coral Reefs 15:101–107Google Scholar
  109. Risk MJ, Sammarco PW (1982) Bioerosion of corals and the influence of damselfish territoriality, a preliminary study. Oecologia 52:376–380CrossRefGoogle Scholar
  110. Risk MJ, Sammarco PW, Edinger EN (1995) Bioerosion in Acropora across the continental shelf of the Great Barrier Reef. Coral Reefs 14:79–86CrossRefGoogle Scholar
  111. Rotjan RD, Lewis SM (2006) Parrotfish abundance and corallivory on a Belizean coral reef. J Exp Mar Biol Ecol 335:292–301CrossRefGoogle Scholar
  112. Rotjan RD, Dimond JL, Thornhill DJ, Leichter JJ, Helmuth BST, Kemp DW, Lewis SM (2006) Chronic parrotfish grazing impedes coral recovery after bleaching. Coral Reefs 25:361–368CrossRefGoogle Scholar
  113. Rose CS, Risk MJ (1985) Increase in Cliona delitrix infestation of Montastrea cavernosa heads on an organically polluted portion of the Grand Cayman fringing reef. Mar Ecol 6:345–363CrossRefGoogle Scholar
  114. Russ GR (1984) The distribution and abundance of herbivorous grazing fishes in the central Great Barrier Reef. II. Levels of variability across the entire continental shelf. Mar Ecol Prog Ser 20:23–34CrossRefGoogle Scholar
  115. Rützler K (1974) The burrowing sponges of Bermuda. Smithson Contribut Zoo 165:1–32Google Scholar
  116. Rützler K (2002) Impact of crustose Clionid sponges on Caribbean reef corals. Acta Geol Hisp 37:61–72Google Scholar
  117. Schneider J (1976) Biological and inorganic factors in the destruction of limestone coasts. Contributions Sediment 6:1–112Google Scholar
  118. Schneider J, Campion-Alsumard T (1999) Construction and destruction of carbonates by marine and freshwater cyanob. Eur J Phycol 34:417–426CrossRefGoogle Scholar
  119. Schneider J, Torunski H (1983) Biokarst on limestone coasts, morphogenesis and sediment production. Mar Ecol 4:45–63CrossRefGoogle Scholar
  120. Schönberg CHL (2000) Bioeroding sponges common to the Central Great Barrier Reef: descriptions of three new species, two new records, and additions to two previously described species. Senckenb Marit 30:161–221CrossRefGoogle Scholar
  121. Schönberg CHL (2003) Substrate effects on the bioeroding Desmosponge Cliona orientalis. 2. Substrate colonisation and tissue growth. Mar Ecol 24:59–74CrossRefGoogle Scholar
  122. Schönberg CHL, Loh WKW (2005) Molecular identity of the unique symbiotic dinoflagellates found in the bioeroding desmosponge Cliona orientalis. Mar Ecol Prog Ser 299:157–166CrossRefGoogle Scholar
  123. Schönberg CHL (2008) A history of sponge erosion: from past myths and hypotheses to recent approaches. In: Wisshak M, Tabanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 165–202CrossRefGoogle Scholar
  124. Schönberg CHL, Tapanila L (2006) The bioeroding sponge Aca paratypica, a modern tracemaking analogue for the Paleozoic ichnogenus Entobia devonica. Ichnos 13:147–157CrossRefGoogle Scholar
  125. Schönberg CHL, Wilkinson CR (2001) Induced colonization of corals by a clionid bioeroding sponge. Coral Reefs 20:69–76CrossRefGoogle Scholar
  126. Scoffin TP, Stearn CW, Boucher D, Frydl P, Hawkins CM, Hunter IG, MacGeachy JK (1980) Calcium carbonate budget of a fringing reef on the West coast of Barbados. Part II. Erosion, sediments and internal structure. Bull Mar Sci 30:475–508Google Scholar
  127. Scott PJB, Risk MJ (1988) The effect of Lithophaga (Bivalvia: Mytilidae) boreholes on the strength of the coral Porites lobata. Coral Reefs 7:145–151CrossRefGoogle Scholar
  128. Scott PJB (1988) Distribution, habitat and morphology of the Caribbean coral- and rock-boring bivalve, Lithophaga bisulcata (d’Orbigny) (Mytilidae: Lithophaginae). J Molluscan Stud 54:83–95CrossRefGoogle Scholar
  129. Stearn CW, Scoffin TP, Martindale W (1977) Calcium carbonate budget of a fringing reef on the west coast of Barbardos. Part 1: zonation and productivity. Bull Mar Sci 27:479–510Google Scholar
  130. Stockfors M, Peel JS (2005) Euendolithic Cyanobacteria from the Middle Cambrian of North Greenland. Geologiska Föreningens i Stockholm Förhandlingar, IFF 127:179–185Google Scholar
  131. Tapanila L, Copper P, Edinger E (2004) Environmental and substrate controls on Paleozoic bioerosion in corals and stromatoporoids, Anticosti Island, eastern Canada. Palaios 19:292–306CrossRefGoogle Scholar
  132. Todd JA (2000) The central role of ctenostomes in bryozoan phylogeny. Proceedings of the 11th international Bryozoology association conference, Lawrence pp 104–135Google Scholar
  133. Tomascik T, Sander F (1987) Effects of eutrophication on reefbuilding corals. II. Structure of scleractinian coral communities on fringing reefs, Barbados, West Indies. Mar Biol 94:53–75CrossRefGoogle Scholar
  134. Tudhope AW, Risk MJ (1985) Rate of dissolution of carbonate sediments by microboring organisms, Davies Reef, Australia. J Sediment Petrol 55:440–447Google Scholar
  135. Tribollet A (2001). Processus de bioérosion récifale (Grand Barrière de Corail, Australie). Importance du rôle joué par la microflore perforante, p 190. Ph.D. thesis. Université de la Méditerranée Aix-Marseille, IIGoogle Scholar
  136. Tribollet A (2008a) The boring microflora in modern coral reef ecosystems: a review of its roles. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin-Heiderlberg, pp 67–94CrossRefGoogle Scholar
  137. Tribollet A (2008b) Dissolution of dead corals by euendolithic microorganisms across the northern Great Barrier Reef (Australia). Microb Ecol 55:569–580CrossRefGoogle Scholar
  138. Tribollet A, Payri C (2001) Bioerosion of the crustose coralline alga Hydrolithon onkodes by microborers in the coral reefs of Moorea. French Polynesia. Oceanol Acta 24:329–342CrossRefGoogle Scholar
  139. Tribollet A, Golubic S (2005) Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 24:422–434CrossRefGoogle Scholar
  140. Tribollet A, Decherf G, Hutchings PA, Peyrot-Clausade M (2002) Large-scale spatial variability in bioerosion of experimental coral substrates on the Great Barrier Reef (Australia): importance of microborers. Coral Reefs 21:424–432Google Scholar
  141. Tribollet A, Radtke G, Golubic S Bioerosion. In: Encyclopedia of Geobiology. Springer, Berlin (in press)Google Scholar
  142. Tribollet A, Langdon C, Golubic S, Atkinson M (2006a) Endolithic microflora are major primary producers in dead carbonate substrates of Hawaiian coral reefs. J Phycol 42:292–303CrossRefGoogle Scholar
  143. Tribollet A, Atkinson M, Langdon C (2006b) Effects of elevated pCO2 on epilithic and endolithic metabolism of reef carbonates. Glob Change Biol 12:2200–2208CrossRefGoogle Scholar
  144. Tribollet A, Godinot C, Atkinson M, Langdon C (2009) Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendoliths. Glob Biogeoch Cycles 23:GB3008. doi: 10.1029/2008GB003286 CrossRefGoogle Scholar
  145. Trudgill ST (1976) The marine erosion of limestone on Aldabra Atoll, Indian Ocean. Z Geomorphol Suppl 26:164–200Google Scholar
  146. Vogel K, Gektidis M, Golubic S, Kiene WE, Radtke G (2000) Experimental studies on microbial bioerosion at Lee Stocking Island, Bahamas and One Tree Island, Great Barrier Reef, Australia: implications for paleoecological reconstructions. Lethaia 33:190–204CrossRefGoogle Scholar
  147. Walker SE (2007) Traces of gastropod predation on molluscan prey in tropical reef environments. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 324–344Google Scholar
  148. Ward-Paige CA, Risk MJ, Sherwood OA, Jaap WC (2005) Clionid sponge surveys on the Florida Reef Tract suggest land-based nutrient inputs. Facies 51:570–579Google Scholar
  149. Warme JE (1975) Borings as trace fossils, and the processes of marine bioerosion. In: Frey RW (ed) The study of trace fossils. Springer, Berlin Heidelberg, New York, pp 181–229Google Scholar
  150. Wielgus J, Glassom D, Chadwick NE (2006) Patterns of polychaete worm infestation of stony corals in the northern Red Sea and relationships to water chemistry. Bull Mar Sci 78:377–388Google Scholar
  151. Wilkinson C (2002) The status of the coral reefs of the world: 2002, Australian Institute of Marine Science and the Global Coral Reef Monitoring Network, Townsville, pp 1–378Google Scholar
  152. Wilson MA (2007) Macroborings and the evolution of marine bioerosion. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam-Oxford-New York, pp 356–367Google Scholar
  153. Wilson MA, Palmer TJ (2006) Patterns and processes in the Ordovician bioerosion revolution. Ichnos 13:109–112CrossRefGoogle Scholar
  154. Wilson MA (2008) An online bibliography of bioerosion references. In: Wisshack M, Tapanila L (eds) Current development in bioerosion. Springer, Berlin-Heidelberg, pp 473–478, http://www.wooster.edu/geology/bioerosion/BioerosionBiblio.pdfCrossRefGoogle Scholar
  155. Wisshak M (2006). High-latitude bioerosion. In: S. Bhattachararji, H. J. Neugebauer, J. Reitner, and K.Stüwe (eds.) Lecture, Notes in Earth Sciences, Berlin-Heidelberg Springer, vol 109 pp 1–202Google Scholar
  156. Zea S, Weil E (2003) Taxonomy of the Caribbean excavating sponge species complex Cliona caribbaeaC. apricaC. langae (Porifera, Hadromerida, Clionaidae). Caribbean J Sci 39:348–370Google Scholar
  157. Zhang Y, Golubic S (1987) Endolithic microfossils (cyanophyta) from early Proterozoic stromatolites, Hebei, China. Acta Micropaleontologica Sinica 4:1–12Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institut de Recherche pour le DéveloppementUnité de Recherche CAMELIANouméa CedexNouvelle-Calédonie
  2. 2.Department of BiologyBoston UniversityBostonUSA

Personalised recommendations