Orthogonal Latin Squares and the Falsity of Euler’s Conjecture

  • Aloke Dey
Part of the Texts and Readings in Mathematics book series (TRIM, volume 67)

Abstract

The problems relating to the existence and construction of orthogonal Latin squares have fascinated researchers for several centuries now. Though many important discoveries have been made, some problems still remain unresolved. Latin squares and orthogonal Latin squares have a beautiful underlying structure and are related to other combinatorial objects. These have applications in different areas, including statistical design of experiments and cryptology. Comprehensive accounts of the theory and applications of Latin squares are available in the books by J. Dénes and A. D. Keedwell (1974, 1991) and C. F. Laywine and G. L. Mullen (1998).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, I., C. J. Colbourn, J. H. Dinitz and T. S. Griggs (2007). Design theory: Antiquity to 1950. In: Handbook of Combinatorial Designs, 2nd. ed. (C. J. Colbourn and J. H. Dinitz, Eds.). New York: Chapman and Hall/CRC, pp. 11–22.Google Scholar
  2. Bose, R. C. (1938). On the application of the properties of Galois fields to the problem of construction of hyper-Greaco-latin squares. Sankhyā 3, 323–338.Google Scholar
  3. Bose, R. C. and S. S. Shrikhande (1959). On the falsity of Euler’s conjecture about the non-existence of two orthogonal latin squares of order 4t+2. Proc. Natl. Acad. Sci. U. S. A. 45, 734–737.MathSciNetCrossRefMATHGoogle Scholar
  4. Bose, R. C. and S. S. Shrikhande (1960). On the construction of sets of mutually orthogonal latin squares and the falsity of a conjecture of Euler. Trans. Amer. Math. Soc. 95, 191–209.MathSciNetCrossRefMATHGoogle Scholar
  5. Bose, R. C., S. S. Shrikhande and E. T. Parker (1960). Further results on the constructon of mutually orthogonal latin squares and the falsity of Euler’s conjecture. Can. J. Math. 12, 189–203.CrossRefMATHGoogle Scholar
  6. Bruck, R. H. and H. J. Ryser (1949). The nonexistence of certain finite projective planes. Can. J. Math. 1, 88–93.MathSciNetCrossRefMATHGoogle Scholar
  7. Chowla, S. and H. J. Ryser (1950). Combinatorial problems. Can. J. Math. 2, 93–99.MathSciNetCrossRefMATHGoogle Scholar
  8. Dénes, J. and A. D. Keedwell (1974). Latin Squares and Their Applications. New York: Academic Press.MATHGoogle Scholar
  9. Dénes, J. and A. D. Keedwell (eds.) (1991). Latin Squares: New Developments in the Theory and Applications. Amsterdam: North-Holland. Annals of Discrete Mathematics 46.MATHGoogle Scholar
  10. Euler, L. (1782). Recherches sur une nouvelle espece de quarrés magiques. Verh. Zeeuw. Gen. Weten. Vlissengen 9, 85–239.Google Scholar
  11. Evans, T. (1982). Universal algebra and Euler’s officer problem. Amer. Math. Monthly 86, 466–479.MathSciNetCrossRefGoogle Scholar
  12. Fisher, R. A. and F. Yates (1934). The 6 × 6 Latin squares. J. Cambridge Phil. Soc. 30, 492–507.CrossRefMATHGoogle Scholar
  13. Lam, C. W. H., L. H. Thiel and S. Swiercz (1989). The nonexistence of finite projective planes of order 10. Can. J. Math. 41, 1117–1123.MathSciNetCrossRefMATHGoogle Scholar
  14. Laywine, C. F. and G. L. Mullen (1998). Discrete Mathematics Using Latin Squares. New York: Wiley.MATHGoogle Scholar
  15. Levi, F. W. (1942). Finite Geometrical Systems. University of Calcutta.MATHGoogle Scholar
  16. MacNeish, H. F. (1921). Das problem der 36 Offiziere. Ber. Deuts. Mat. Ver. 30, 151–153.MATHGoogle Scholar
  17. MacNeish, H. F. (1922). Euler squares. Ann. Math. 23, 221–227.MathSciNetCrossRefMATHGoogle Scholar
  18. Mann, H. B. (1942). The construction of orthogonal latin squares. Ann. Math. Statist. 13, 418–423.MathSciNetCrossRefMATHGoogle Scholar
  19. Mann, H. B. (1949). Analysis and Design of Experiments. New York: Dover.Google Scholar
  20. Moore, E. H. (1896). Tactical memoranda I–III. Amer. J. Math. 18, 264–303.MathSciNetCrossRefMATHGoogle Scholar
  21. Nazarok, A. V. (1991). Five pairwise orthogonal latin squares of order 21. Issled. Oper. ASU, 54–56.Google Scholar
  22. Ozanam, J. (1723). Récréations Mathématiques et Physiques, qui contiennent Plusieurs Problémes utiles … agréables, d’Arithmetique, de Geometrie, d’Optique, de Gnomonique, de Cosmographie, de Mécanique, de Pyrotechnie, … de Physique. 4 Vols. Paris: Jombert (updated edition).Google Scholar
  23. Parker, E. T. (1959a). Construction of some sets of pairwise orthogonal Latin squares. Proc. Amer. Math. Soc. 10, 946–951.MathSciNetCrossRefMATHGoogle Scholar
  24. Parker, E. T. (1959b). Orthogonal latin squares. Proc. Natl. Acad. Sci. U. S. A. 45, 859–862.MathSciNetCrossRefMATHGoogle Scholar
  25. Peterson, J. (1901). Les 36 officieurs. Ann. Math. 1, 413–427.Google Scholar
  26. Shrikhande, S. S. (1950). The impossibility of certain symmetrical balanced incomplete block designs. Ann. Math. Statist. 21, 106–111.MathSciNetCrossRefMATHGoogle Scholar
  27. Stevens, W. L. (1939). The completely orthogonalised Latin squares. Ann. Eugen. 9, 82–93.CrossRefGoogle Scholar
  28. Stinson, D. R. (1984). A short proof of the nonexistence of a pair of orthogonal Latin squares of order six. J. Combin. Theor. Ser. A 36, 373–376.MathSciNetCrossRefMATHGoogle Scholar
  29. Tarry, G. (1900). Le probléme des 36 officers. Comptes Rendus de l’Association Francaise pour l’Avancement des Sciences: Série de mathématiques, astronomie, géodésie et mécanique 29, 170–203.MATHGoogle Scholar
  30. Wernicke, P. (1910). Das problem der 36 Offiziere. Deutsche Math.-Ver. 19, 264–267.MATHGoogle Scholar

Copyright information

© Hindustan Book Agency 2013

Authors and Affiliations

  • Aloke Dey
    • 1
  1. 1.Indian Statistical InstituteNew DelhiIndia

Personalised recommendations