Advertisement

N = 1 Supersymmetric Gauge Theories

  • Debashis Ghoshal
Part of the Texts and Readings in Physical Sciences book series

Abstract

At least at a non-technical level, all of us have heard that super-symmetry (called susy for short), is a symmetry that mixes bosonic and fermionic degrees of freedom in a dynamical system. We will make this notion more precise during the course of these lectures; however before getting into that let us spend a few minutes to recall the motivation for the exercise we are going to undertake.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    J. Lykken, Introduction to supersymmetry, TASI lectures 1996, (hep-th/9612114).Google Scholar
  2. [2]
    J. Wess and J. Bagger, Supersymmetry and supergravity, 2nd Ed (1992), Princeton University Press, Princeton.zbMATHGoogle Scholar
  3. [3]
    M. Peskin, Duality in supersymmetric Yang-Mills theory, TASI lectures 1996, (hep-th/9702094).Google Scholar
  4. [4]
    N. Seiberg, The dynamics of N = 1 supersymmetric field theories in four dimensions in Quantum fields & strings: A course for mathematicians, Eds. P. Deligne et al, also available at http://medan.math.ias.edu/QFT/spring/index.html.
  5. [5]
    P. Sohnius, Phys. Rep. 128 (1985) 39.ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    P. West, Introduction to supersymmetry and supergravity, World Scientific, Singapore.Google Scholar
  7. [7]
    Y. Golfand and E. Likhtman, JETP Lett 13 (1971) 323.ADSGoogle Scholar
  8. [8]
    J. Wess and B. Zumino, Phys. Lett. B49 (1974) 52.CrossRefGoogle Scholar
  9. [9]
    S. Coleman and Mandula, Phys. Rev. 159 (1967) 1251.ADSCrossRefGoogle Scholar
  10. [10]
    R. Haag, J. Lopuszanski and M. Sohnius, Nucl. Phys. B88 (1975) 257.ADSCrossRefGoogle Scholar
  11. [11]
    A. Salam and J. Strathdee, Nucl. Phys. 76 (1974) 477.ADSCrossRefGoogle Scholar
  12. [12]
    L. O’Raifeartaigh, Nucl. Phys. B96 (1975) 331.ADSCrossRefGoogle Scholar
  13. [13]
    P. Fayet and Iliopoulos, Phys. Lett. B51 (1974) 461.CrossRefGoogle Scholar
  14. [14]
    M. Luty and W. Taylor, Phys. Rev. D53 (1996) 3399, (hep-th/9506098).ADSMathSciNetGoogle Scholar
  15. [15]
    K. Intriligator and N. Seiberg, Lectures on supersymmetric gauge theories and electric-magnetic duality, Nucl. Phys. Proc. Suppl. B45 (1996) 1, (hep-th/9509066).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    N. Seiberg, Phys. Lett B318 (1993) 469.MathSciNetCrossRefGoogle Scholar
  17. [17]
    I. Jack, D. Jones and P. West, Phys. Lett B258 (1991) 382.MathSciNetCrossRefGoogle Scholar
  18. [18]
    M. Shifman and A. Vainshtein, Nucl. Phys. B277 (1986) 456.ADSCrossRefGoogle Scholar

Copyright information

© Hindustan Book Agency 2005

Authors and Affiliations

  • Debashis Ghoshal

There are no affiliations available

Personalised recommendations