Higgs physics is at present poised at an interesting juncture, when a light Higgs boson of the Standard Model (henceforth to be referred to as SM), a spin-zero particle which would signal spontaneous gauge symmetry breaking in the simplest form, has not been seen until the conclusion of experiments at LEP and LEP2 electron-positron collider at CERN, Geneva. It is possible that ongoing experiments at the \(p\bar p\) collider Tevatron at FNAL in U.S.A. may discover the SM Higgs boson if the mass is not too large. If it is not seen at Tevatron, one will have to wait until results come out of the LHC (Large Hadron Collider) which is being built at CERN for a heavier Higgs. From a theoretical point of view, the developments until the present time are complex and interesting. While some of the basic principles underlying spontaneous symmetry breaking of gauge symmetry and the Higgs mechanism are now commonly known, the actual realization of this mechanism in nature is still a subject of investigation. The mass of the SM Higgs boson is an unknown parameter and the pheonemonology is sensitively dependent on the mass. Thus the properties and discovery strategies for the Higgs vary greatly depending on the supposed mass, and the phenomenology rapidly gets complex as the range of the Higgs mass is increased.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.S. Chanowitz, Ann. Rev. Nucl. Part. Sci. 38, 323 (1988).ADSCrossRefGoogle Scholar
  2. [2]
    R.N. Cahn, Rep. Prog. Phys. 52, 398 (1989).ADSCrossRefGoogle Scholar
  3. [3]
    R.N. Cahn in “Où est le Higgs”, Lecture Notes of L’École d’été de physique des particules, 3–7 September 1990, Centre de Recherches Nucléaires de Strasbourg.Google Scholar
  4. [4]
    J.F. Gunion, H.E. Haber, G. Kane and S. Dawson, Higgs Hunter’s Guide, Addison-Wesley (1990).Google Scholar
  5. [5]
    M.B. Einhorn (ed.), The Standard Model Higgs Boson, North-Holland (1991).zbMATHGoogle Scholar
  6. [6]
    J. Goldstone, Nuov. Cim. 19, 154 (1961);MathSciNetCrossRefGoogle Scholar
  7. J. Goldstone, A. Salam and S. Weinberg, Phys. Rev. 127, 965 (1962).ADSMathSciNetCrossRefGoogle Scholar
  8. [7]
    P.W. Higgs, Phys. Lett. 12, 132 (1964);ADSCrossRefGoogle Scholar
  9. [7a]
    P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964);ADSMathSciNetCrossRefGoogle Scholar
  10. [7]
    P.W. Higgs, Phys. Rev. 145, 1156 (1966);ADSMathSciNetCrossRefGoogle Scholar
  11. F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964);ADSMathSciNetCrossRefGoogle Scholar
  12. G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Phys. Rev. Lett. 13, 585 (1964);ADSCrossRefGoogle Scholar
  13. T.W.B. Kibble, Phys. Rev. 155, 1554 (1967).ADSCrossRefGoogle Scholar
  14. [8]
    A.D. Linde, JETP Lett. 23, 63 (1976);ADSGoogle Scholar
  15. A.D. Linde Phys. Lett. B62, 435 (1976).CrossRefGoogle Scholar
  16. [9]
    S. Weinberg, Phys. Rev. Lett. 36, 294 (1976).ADSCrossRefGoogle Scholar
  17. [10]
    S. Coleman and E. Weinberg, Phys. Rev. D7, 1888 (1973).ADSCrossRefGoogle Scholar
  18. [11]
    H. Politzer and S. Wolfram, Phys. Lett. B82, 242 (1978);CrossRefGoogle Scholar
  19. [11]
    H. Politzer and S. Wolfram Phys. Lett. B83, 421 (1979) (E).CrossRefGoogle Scholar
  20. [12]
    P.Q. Hung, Phys. Rev. Lett. 42, 873 (1979).ADSCrossRefGoogle Scholar
  21. [13]
    N. Cabibbo, L. Maiani, G. Parisi, and R. Petronzio, Nucl. Phys. B158, 295 (1979).ADSCrossRefGoogle Scholar
  22. [14]
    A.D. Linde, Phys. Lett. B70, 306 (1977).CrossRefGoogle Scholar
  23. [15]
    M. Lindner, Zeit. Phys. C31, 295 (1986);ADSGoogle Scholar
  24. M. Sher, Phys. Rep. C179, 273 (1989);ADSCrossRefGoogle Scholar
  25. M. Lindner, M. Sher, and H.W. Zaglauer, Phys. Lett. B 228, 139 (1989);ADSCrossRefGoogle Scholar
  26. M. Sher, Phys. Lett. B317, 159 (1993);CrossRefGoogle Scholar
  27. G. Altarelli and G. Isidori, Phys. Lett. B337, 141 (1994);CrossRefGoogle Scholar
  28. J. Espinosa and M. Quiros, Phys. Lett. B353, 257 (1995);CrossRefGoogle Scholar
  29. T. Hambye and K. Riesselmann, Phys. Rev. D55, 7255 (1997).ADSCrossRefGoogle Scholar
  30. [16]
    E. Accomando et al, in Physics at LEP2, vol. 1, p 351, CERN Yellow Report CERN-96–01 (1996).Google Scholar
  31. [17]
    K.G. Wilson, Phys. Rev. B4, 3184 (1971);ADSCrossRefGoogle Scholar
  32. K.G. Wilson and J. Kogut, Phys. Rep. 12, 75 (1974).ADSCrossRefGoogle Scholar
  33. [18]
    R. Dashen and H. Neuberger, Phys. Rev. Lett. 50, 1897 (1983);ADSCrossRefGoogle Scholar
  34. A. Hasenfratz, K. Jansen, C. Lang, T. Neuhas and H. Yoneyama, Phys. Lett. B199, 531 (1987);CrossRefGoogle Scholar
  35. J. Kuti, L. Liu and Y. Shen, Phys. Rev. Lett. 61, 678 (1988);ADSCrossRefGoogle Scholar
  36. M. Lüscher and P. Weisz, Nucl. Phys. B318, 705 (1989).ADSCrossRefGoogle Scholar
  37. [19]
    D.A. Dicus and V.S. Mathur, Phys. Rev. D7, 3111 (1973).ADSGoogle Scholar
  38. [20]
    B.W. Lee, C. Quigg and H.B. Thacker, Phys. Rev. D16, 1519 (1977);ADSCrossRefGoogle Scholar
  39. M. Chanowitz and M.K. Gaillard, Nucl. Phys. B261, 379 (1985).ADSCrossRefGoogle Scholar
  40. [21]
    M. Veltman, Acta Phys. Pol. B8, 475 (1977);Google Scholar
  41. [21a]
    M. Veltman, Phys. Lett. B70, 253 (1977).CrossRefGoogle Scholar
  42. [22]
    M.B. Einhorn and J. Wudka, Phys. Rev. D39, 2758 (1989).ADSCrossRefGoogle Scholar
  43. [23]
    The LEP and SLC Working Groups, hep-ex/0112021.Google Scholar
  44. [24]
    J. Ellis, M.K. Gaillard and D.V. Nanopoulose, Nucl. Phys. B106, 292 (1976).ADSCrossRefGoogle Scholar
  45. [25]
    E. Braaten and J.P. Leveille, Phys. Rev. D22, 715 (1980);ADSGoogle Scholar
  46. [25a]
    N. Sakai, Phys. Rev. D22, 2220 (1980);ADSGoogle Scholar
  47. [25b]
    T. Inami and T. Kubota, Nucl. Phys. B179, 171 (1981).ADSCrossRefGoogle Scholar
  48. [26]
    B.W. Lee, C. Quigg and H.B. Thacker, Phys. Rev. Lett. 38, 883 (1977);ADSCrossRefGoogle Scholar
  49. [26a]
    B.W. Lee, C. Quigg and H.B. Thacker, Phys. Rev. D16, 1519.Google Scholar
  50. [27]
    H. Leutwyler and M.A. Shifman, Phys. Lett. B221, 384 (1989).CrossRefGoogle Scholar
  51. [28]
    A. Vainshtein, M.B. Voloshin, V.I. Zakharov and M.A. Shifman, Sov. J. Nucl. Phys. 30, 711 (1979);Google Scholar
  52. [28a]
    A. Vainshtein, V.I. Zakharovand M.A. Shifman, Sov. Phys. Usp. 23, 429 (1980); ADSCrossRefGoogle Scholar
  53. [28b]
    M. Voloshin, Sov. J. Nucl. Phys. 44, 478 (1986).Google Scholar
  54. [29]
    B.A. Kniehl and M. Spira, Z. Phys. C69, 77 (1995).Google Scholar
  55. [30]
    B.A. Kniehl, Int. J. Mod. Phys. A17, 1457 (2002).ADSCrossRefGoogle Scholar
  56. [31]
    J.D. Bjorken, Stanford report, SLAC-198 (1976).Google Scholar
  57. [32]
    B.L. Ioffe and V.A. Khoze, Sov. J. Part. Nucl. 9, 50 (1978).Google Scholar
  58. [33]
    R.L. Kelly and T. Shimada, Phys. Rev. D23, 1940 (1981).ADSGoogle Scholar
  59. [34]
    S. Dawson, Nucl. Phys. B249, 42 (1985);ADSCrossRefGoogle Scholar
  60. G.L. Kane, W.W. Repko and W.B. Rolnick, Phys. Lett. B148, 367 (1984);CrossRefGoogle Scholar
  61. R.M. Godbole and S.D. Rindani, Phys. Lett. B190, 192 (1987);CrossRefGoogle Scholar
  62. R.M. Godbole and S.D. Rindani, Z. Phys. Lett. C36, 395 (1987).ADSGoogle Scholar
  63. [35]
    ECFA/DESY LC Physics Working Group (J.A. Aguilar-Saavedra et al.), TESLA: The Superconducting electron positron linear collider with an integrated x-ray laser laboratory. Technical design report. Part 3. Physics at an e+ e-linear collider, hep-ph/0106315.Google Scholar
  64. [36]
    M. Carena et al., Fermilab-Conf-00/279-T, hep-ph/0010338.Google Scholar
  65. [37]
    R.N. Cahn and S. Dawson, Phys. Lett. B136, 196 (1984).CrossRefGoogle Scholar
  66. [38]
    M. Spira, hep-ph/9810289.Google Scholar
  67. [39]
    M. Spira, Contribution to the proceedings of the International Europhysics Conference on High-Energy Physics, 19–26 August 1997, Jersusalem, Israel, hep-ph/9711394.Google Scholar

Copyright information

© Hindustan Book Agency 2005

Authors and Affiliations

  • Saurabh D. Rindani

There are no affiliations available

Personalised recommendations