Laser-Produced Plasmas for Bio-Photonics

Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

Laser-produced plasmas (LPP) are laboratory-scale, table-top and high-brightness sources of partially coherent radiation that can be tuned between the extreme ultraviolet and the hard X-rays. A few LPP emission wavelengths have important applications in bio-photonics. As an example, LPP emitting in the so called “water window” (spectral range λ= 4.4 nm – 2.3 nm)allowed the world first X-ray scanning microscopy and contact microscopy, the latter being able to perform in vivo molecules imaging with 50-nm spatial resolution.

Keywords

Active Medium Transverse Mode Lower Order Mode Unstable Resonator Water Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koechner W. (1976) Solid-State Laser Engineering. Springer Verlag, New York Inc. Chapter 5.Google Scholar
  2. 2.
    Siegman A.E. (1965) Unstable optical resonators for laser applications. Proc. IEEE 53, 277–287.CrossRefGoogle Scholar
  3. 3.
    Siegman A.E. (1986) Lasers. University Science Books. Stanford University, Stanford, CA, Chapter 22.Google Scholar
  4. 4.
    Mahan A.I., Bitterli C.V. and Cannon S.M. (1964) Far-field diffraction patterns of single and multiple apertures bounded by arcs and radii of concentric circles. J. Opt. Soc. Am. 54, 721–732.CrossRefGoogle Scholar
  5. 5.
    Ananev Yu. (1992) Laser Resonators and the Beam Divergence Problem. Adam Hilger, Bristol, PA.Google Scholar
  6. 6.
    Di Lazzaro P., Bollanti S., Murra D. and Zheng C.E. (2001) Improved beam quality excimer lasers: a filtering resonator study. Filtering Resonators, S.K. Dixit Ed. Nova Science Publisher, Huntington, New York, Chapter 5.Google Scholar
  7. 7.
    Zemskov K.I., Isaev A., Kazaryan M., Petrash G. and Rautian S. (1975) Use of unstable resonators in achieving the diffraction divergence of the radiation emitted from high-gain pulsed lasers. Sov. J. Quant. Electron. 4, 474–477.CrossRefGoogle Scholar
  8. 8.
    Vergunova A., Magunov A., Dyakin V., Faenov A., Pikuz T., Batani D., Flora F., Di Lazzaro P., et al. (1997) Features of plasma produced by excimer laser at low intensities. Physica Scripta 55, 483–490.CrossRefGoogle Scholar
  9. 9.
    Fournier K., Faenov A., Pikuz T., Skobelev I., Flora F., Bollanti S., Di Lazzaro P., Murra D., et al. (2003) Rydberg transitions in the spectra of near-neon-like Cu and Zn ions in different laser-produced plasmas: observations and modeling. J. Quant. Spectrosc. Radiat. Transfer 81, 167–182.CrossRefGoogle Scholar
  10. 20.
    See e.g., Turcu I.C.E. and Dance J.B. (1999) X-Rays from Laser Plasmas: Generation and Applications. Wiley, New York.Google Scholar
  11. 31.
    See e.g., Galy J., Hamilton D.J. and Normand C. (2009) High-intensity lasers as radiation sources. Eur. Phys. J. Special Topics 175, 147–152.CrossRefGoogle Scholar
  12. 42.
    Loudon R. (2003) The Quantum Theory of Light, Third Edition. Oxford University Press, Oxford, Chapter 5.Google Scholar
  13. 53.
    Albertano P., Reale L., Palladino L., Reale A., Cotton R., Bollanti S., Di Lazzaro P., Flora F., et al. (1997) X-ray contact microscopy using an excimer plasma source with different target materials and laser pulse duration. J. Microsc. 187, 96–103.CrossRefGoogle Scholar
  14. 64.
    Bollanti S., Albertano P., Belli M., Di Lazzaro P., Faenov A., Flora F., Giordano G., Grilli A., et al. (1998) Soft X-ray plasma source for atmospheric pressure microscopy, radiobiology and other applications. Il Nuovo Cimento D 20, 1685–1696.Google Scholar
  15. 75.
    Baldacchini G., Bollanti S., Bonfigli F., Di Lazzaro P., Faenov A., Flora F, Marolo T., Montereali R., et al. (2004) Point defects in Lithium Fluoride by EUV and soft X-rays exposure for X-ray microscopy and optical applications. IEEE J.Selected Topics Quant El. 10, 1435–1445.CrossRefGoogle Scholar
  16. 86.
    See e.g., Segre E. (1965) Nuclei and Particles. W.A. Benjamin Inc., New York.Google Scholar
  17. 97.
    Pianetta P. (1986) Low-energy electron ranges in matter. X-ray data booklet D. Vaughan Ed. Lawrence Berkeley Laboratory, Berkeley, CA, Chapter 3.Google Scholar
  18. 108.
    Folkard M. (1992) Radiation damage to cells by ultrasoft X-rays. X-ray microscopy III, A. Michette, G. Morrison, C. Buckley Eds. Springer Verlag, Berlin, pp. 306–312.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.ENEA Research Center of FrascatiFrascatiItaly

Personalised recommendations