Advertisement

Multiscale Modeling of Electro-mechanically Coupled Materials: Homogenization Procedure and Computation of Overall Moduli

  • Jörg SchröderEmail author
  • Marc-André Keip
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 24)

Abstract

In this contribution, a meso-macro transition procedure for electro-mechanically coupled materials is presented. The utilized mesoscopic material model will be introduced and implemented into an FE2-homogenization approach. The resulting two-scale formulation is capable to compute macroscopic boundary value problems under consideration of attached heterogeneous representative volume elements at each macroscopic point. The presented direct homogenization procedure also allows for the efficient computation of effective electro-mechanical material parameters.

Keywords

Boundary Value Problem Representative Volume Element Electric Displacement Finite Element Approximation Fluctuation Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Chen T (1994) Micromechanical estimates of the overall thermoelectroelastic moduli of multiphase fibrous composites. Int J Solid Struct 31(22):3099–3111zbMATHCrossRefGoogle Scholar
  2. 2.
    Francfort GA, Murat F (1986) Homogenization and optimal bounds in linear elasticity. Arch Ration Mech Anal 94:307–334MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Hashin Z, Shtrikman S (1962) On some variational principles in anisotropic and nonhomogeneous elasticity. J Mech Phys Solid 10:335–342MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hill R (1963) Elastic properties of reinforced solids: Some theoretical principles. J Mech Phys Solid 11:357–372zbMATHCrossRefGoogle Scholar
  5. 5.
    Kröner E (1977) Bounds for effective elastic moduli of disordered materials. J Mech Phys Solid 25:137–155zbMATHCrossRefGoogle Scholar
  6. 6.
    Li Z, Wang C, Chen C (2003) Effective electromechanical properties of transversely isotropic piezoelectric ceramics with microvoids. Comput Mater Sci 27(3):381–392CrossRefGoogle Scholar
  7. 7.
    Markovic D, Niekamp R, Ibrahimbegovic A, Matthies HG, Taylor RL (2005) Multi-scale modeling of heterogeneous structures with inelastic constitutive behavior. Int J Comput Aid Eng Software 22(5/6):664–683zbMATHCrossRefGoogle Scholar
  8. 8.
    Miehe C, Koch A (2002) Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Arch Appl Mech 72(4):300–317zbMATHCrossRefGoogle Scholar
  9. 9.
    Miehe C, Schotte J, Schröder J (1999) Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput Mater Sci 16(1–4):372–382CrossRefGoogle Scholar
  10. 10.
    Miehe C, Schröder J, Schotte J (1999) Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput Method Appl Mech Eng 171(3–4):387–418zbMATHCrossRefGoogle Scholar
  11. 11.
    Romanowski H (2006) Kontinuumsmechanische Modellierung ferroelektrischer Materialien im Rahmen der Invariantentheorie. PhD thesis, Institut für Mechanik, Fakultät Ingenieurwissenschaften, Abteilung Bauwissenschaften, Universität Duisburg-EssenGoogle Scholar
  12. 12.
    Romanowski H, Schröder J (2005) Coordinate invariant modelling of the ferroelectric hysteresis within a thermodynamically consistent framework. A mesoscopic approach. In: Wang Y, Hutter K (eds) Trends in applications of mathematics and mechanics. Shaker Verlag, Aachen, pp 419–428Google Scholar
  13. 13.
    Schröder J (2000) Homogenisierungsmethoden der nichtlinearen Kontinuumsmechanik unter Beachtung von Instabilitäten. Bericht aus der Forschungsreihe des Instituts für Mechanik (Bauwesen), Lehrstuhl I, Universität StuttgartGoogle Scholar
  14. 14.
    Schröder J (2009) Derivation of the localization and homogenization conditions for electro-mechanically coupled problems. Comput Mater Sci 46:595–599CrossRefGoogle Scholar
  15. 15.
    Schröder J, Gross D (2004) Invariant formulation of the electromechanical enthalpy function of transversely isotropic piezoelectric materials. Arch Appl Mech 73:533–552zbMATHCrossRefGoogle Scholar
  16. 16.
    Schröder J, Keip M-A (2009) Computation of the overall properties of microheterogeneous piezoelectric materials. (in preparation)Google Scholar
  17. 17.
    Schröder J, Keip M-A (2010) Computer methods in mechanics – Lectures on the CMM 2009, chapter A framework for the two-scale homogenization of electro-mechanically coupled boundary value problems. Springer, vol. 1, III:311–329Google Scholar
  18. 18.
    Smit RJM, Brekelmans WAM, Meijer HEH (1998) Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput Method Appl Mech Eng 155:181–192zbMATHCrossRefGoogle Scholar
  19. 19.
    Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analyses of heterogeneous media. Comput Method Appl Mech Eng 190(40–41):5427–5464MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Walpole LJ (1966) On bounds for the overall elastic moduli of inhomogeneous system. J Mech Phys Solid 14:151–162zbMATHCrossRefGoogle Scholar
  21. 21.
    Willis JR (1966) Bounds and self-consistent estimates for the overall properties of anisotropic composites. J Mech Phys Solid 25:185–202MathSciNetCrossRefGoogle Scholar
  22. 22.
    Xia Z, Zhang Y, Ellyin F (2003) A unified periodical boundary conditions for represantative colume elements of composites and applications. Int J Solid Struct 40:1907–1921zbMATHCrossRefGoogle Scholar
  23. 23.
    Zgonik M, Bernasconi P, Duelli M, Schlesser R, Günter P, Garrett MH, Rytz D, Zhu Y, WuX (1994) Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3crystals. Phys Rev B 50(9):5941–5949CrossRefGoogle Scholar
  24. 24.
    Zohdi TI (2008) On the computation of the coupled thermo-electromagnetic response of continua with particulate microstructure. Int J Numer Method Eng 76(8):1250–1279MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Zohdi TI, Wriggers P (2005) Introduction to computational micromechanics. In: PfeifferF, Wriggers P (eds) Lecture notes in applied and computational mechanics, vol20. Springer, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute for Mechanics, Faculty of Engineering Sciences, Department of Civil EngineeringUniversity of Duisburg-EssenEssenGermany

Personalised recommendations