Influence of the Load Dependent Material Properties on the Performance of Multilayer Piezoelectric Actuators

  • Hannes Grünbichler
  • Josef Kreith
  • Raúl Bermejo
  • Clemens Krautgasser
  • Peter Supancic
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 24)

Abstract

Multilayer piezoelectric actuators are commonly used to control injection valves in modern combustion-engines. Their structural and functional integrity is associated with the loading conditions as well as with the actuator-design. In service mechanical stresses are an inherent loading scenario of such electro-mechanical converter components. Internal inhomogeneous mechanical and electrical fields may harm their integrity and accelerate phenomena such as degradation, fatigue and subcritical crack growth. A way to delay these phenomena is to reduce the tensile field-amplitudes by operating these piezoelectric components under a low compressive bias-stress. However, this also may influence the component’s performance. Interestingly, this bias-stress enhances its strain characteristics. In this work the electro-mechanical behaviour of a multilayer actuator has been characterised under different loading conditions using an adapted universal materials testing machine (UTM). The stiffness of the UTM has also been adjusted to simulate realistic conditions. This adaption enables the measurement of mechanical properties– such as mechanical stress and the corresponding strain– and electrical quantities, i.e. the electrical charge (or electric displacement) and the applied voltage (or electrical field) to the actuator. As a result, the stiffness, hysteresis-loops, such as the dielectric and butterfly curves and the stress-strain loop, as well as the actuator’s performance, can be measured.

Keywords

Electrical Field Strength Field Enhancement Switchable Domain Subcritical Crack Growth Applied Electrical Field Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Financial support by the Austrian Federal Government (in particular from the Bundesministerium für Verkehr, Innovation und Technologie and the Bundesministerium für Wirtschaft und Arbeit) and the Styrian Provincial Government, represented by Österreichische Forschungsförderungsgesellschaft mbH and by Steirische Wirtschaftsförderungsgesellschaft mbH, within the research activities of the K2 Competence Centre on “Integrated Research in Materials, Processing and Product Engineering,” operated by the Materials Center Leoben Forschung GmbH in the framework of the Austrian COMET Competence Centre Programme, is gratefully acknowledged.

The authors thank furthermore Mr. Athenstaedt W, Mr. Auer C and Mr. Hoffmann C for critical discussions and the company EPCOS OHG, Deutschlandsberg, Austria, for providing the material for this investigation.

References

  1. 1.
    Uchino K (1997) Piezoelectric actuators and ultrasonic motors. In: Tuller HL (ed) Electronic materials: science and technology, Kluwer Academic PublishersGoogle Scholar
  2. 2.
    Mock R, Lubitz K (2009) Piezoelectric injection systems. In: Heywang W, Lubitz K, Wersing W (eds) Piezoelectricity. Evolution and future of a technology, vol 114. Springer Series in Materials ScienceGoogle Scholar
  3. 3.
    Setter N (2002) Piezoelectric materials in devices. Ceramics Laboratory, EPFL Swiss Federal Institute of Technology, LjubljanaGoogle Scholar
  4. 4.
    Helke G, Lubitz K (2009) Piezoelectric PZT ceramics. In: Heywang W, Lubitz K, Wersing W (eds) Piezoelectricity. Evolution and future of a technology, vol 114. Springer Series in Materials ScienceGoogle Scholar
  5. 5.
    Bhattacharya K, Ravichandran G (2003) Ferroelectric perovskites for electromechanical actuation. Acta Mat 51:5941–5960CrossRefGoogle Scholar
  6. 6.
    Kamlah M (2001) Review article– ferroelectric and ferroelastic piezoceramics– modelling of electromechanical hysteresis phenomena. Continuum Mech Thermodyn 13:219–268Google Scholar
  7. 7.
    Zhou DY (2003) Experimental investigation of non-linear constitutive behavior of PZT piezoceramics. Ph.D.-thesis, University of KarlsruheGoogle Scholar
  8. 8.
    Mitrovic M, Carman GP, Straub FK (2001) Response of piezoelectric stack actuators under combined electro-mechanical loading. Int J Solids Struct 38:4357–4374MATHCrossRefGoogle Scholar
  9. 9.
    Arnold S, Pertsch P, Spanner K (2009) Piezoelectric Positioning. In: Heywang W, Lubitz K, Wersing W (eds) Piezoelectricity. Evolution and Future of a Technology, vol 114. Springer Series in Materials ScienceGoogle Scholar
  10. 10.
    dos Santos e Lucato SL, Lupascu DC, Kamlah M, etal (2001) Constraint-induced crack initiation at electrode edges in piezoelectric ceramics. Acta Mat 49:2751–2759Google Scholar
  11. 11.
    Elhadrouz M, Ben Zineb T, Patoor E (2006) Finite element analysis of a multilayer piezoelectric actuator taking into account the ferroelectric and ferroelastic behaviors. I J Eng Sci 44(15–16):996–1006Google Scholar
  12. 12.
    Aburatani H, Harada S, Uchino K, etal (1994) Destruction mechanisms in ceramic multilayer actuators. Jpn J Appl Phys 33:3091–3094Google Scholar
  13. 13.
    Furuta A, Uchino K (1993) Dynamic observation of crack propagation in piezoelectric multilayer actuators. J Am Ceram Soc 76:1615–1617CrossRefGoogle Scholar
  14. 14.
    He M-Y, Suo Z, McMeeking RM, etal (1994) The mechanics of some degradation mechanisms in ferroelectric ceramic actuators. Proc. SPIE 2189:344–355CrossRefGoogle Scholar
  15. 15.
    Ru CQ, Mao X, Epstein M (1998) Electric-field induced interfacial cracking in multilayer electrostrictive actuators. J Mech Phys Solids 46(8):1301–1318MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Mao GZ, Fang DN (2004) Fatigue crack growth induced by domain switching under electromechanical load in ferroelectrics. Theor Appl Fract Mech 41:115–123CrossRefGoogle Scholar
  17. 17.
    Salz CRJ, Hoffmann M, Westram I, Rödel J (2005) Cyclic fatigue crack growth in PZT under mechanical loading. J Am Ceram Soc 88:1331–1333CrossRefGoogle Scholar
  18. 18.
    Bermejo R, Grünbichler H, Kreith J, Auer C (2009) Fracture resistance of a doped PZT ceramic for multilayer piezoelectric actuators: Effect of mechanical load and temperature. J Eur Ceram Soc. doi:10.1016/j.jeurceramsoc.2009.08.013Google Scholar
  19. 19.
    Bermejo R, Grünbichler H, Kreith J, Danzer R (2008) Evaluation of toughness anisotropy of doped PZT ceramics as a function of load and temperature. In: Pokluda J, Luká\(\check{s}\)P,\(\breve{S}\)andera P, Dlouhý I (eds) Proceedings of the 17th european conference on fracture, VUTIUM Brno, pp 1701–1708Google Scholar
  20. 20.
    Kerkamm I, Hiller P, Granzow T, Rödel J (2009) Correlation of small- and large-signal properties of lead zirconate titanate multilayer actuators. Acta Mat 57:77–86CrossRefGoogle Scholar
  21. 21.
    Grünbichler H, Kreith J, Bermejo R, etal (2009) Modelling of the ferroic material behaviour of piezoelectrics: characterisation of temperature-sensitive functional properties. J Eur Ceram Soc. doi:10.1016/j.jeurceramsoc.2009.04.033Google Scholar
  22. 22.
    Kreith J, Grünbichler H, Bermejo R, etal (2008) Adaptation of a materials testing machine to characterise piezoelectric actuators. In: Freer R (ed) Proceedings of electroceramics XI, ManchesterGoogle Scholar
  23. 23.
    Wersing W, Heywang W, Beige H, Thomann H (2009) The role of ferroelectricity for piezoelectric materials. In: Heywang W, Lubitz K, and Wersing W (eds) Piezoelectricity. Evolution and future of a technology, vol 114. Springer Series in Materials ScienceGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Hannes Grünbichler
    • 1
  • Josef Kreith
    • 2
  • Raúl Bermejo
    • 1
  • Clemens Krautgasser
    • 2
  • Peter Supancic
    • 1
  1. 1.Institut für Struktur- und FunktionskeramikLeobenAustria
  2. 2.Materials Center Leoben Forschung GmbHLeobenAustria

Personalised recommendations