A Review of Invariant Manifold Dynamics of the CRTBP and Some Applications

  • Josep J. MasdemontEmail author


In this short review we show how the invariant manifolds of quasiperiodic orbits about libration point regimes play a crucial role to study the dynamics in some astrodynamical and astronomical problems, and how they can be used for practical purposes. Some discussion about their computation is also given.


Normally hyperbolic invariant manifolds Lindstedt Poincaré Normal forms Quasiperiodic orbits Libration point orbits 



This work partially supported by the Spanish MCyT-FEDER Grant MTM2006-00478 and the Marie Curie Research Training Network Astronet Grant MCRTN-CT-2006-035151.


  1. 1.
    E.M. Alessi, G. Gómez, J.J. Masdemont, Leaving the Moon by means of invariant manifolds of libration point orbits. Commun. Nonlinear Sci. Numer. Simul. 14, 4153–4167 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    V.I. Arnold (ed.), Dynamical Systems III. Encyclopaedia of Mathematical Sciences, vol. 3 (Springer, Berlin, 1988) Google Scholar
  3. 3.
    E. Canalias, J. Cobos, J.J. Masdemont, Impulsive transfers between Lissajous libration point orbits. J. Astronaut. Sci. 51, 361–390 (2003) MathSciNetGoogle Scholar
  4. 4.
    E. Canalias, J.J. Masdemont, Computing natural transfers between Sun–Earth and Earth–Moon Lissajous libration point orbits. Acta Astronaut. 63, 238–248 (2008) CrossRefGoogle Scholar
  5. 5.
    A. Delshams, J.J. Masdemont, P. Roldán, Computing the scattering map in the spatial Hill’s problem. Discrete Contin. Dyn. Syst. Ser. B 10, 455–483 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    M. Deltnitz, O. Junge, M.W. Lo, J.E. Marsden, K. Padberg, R. Preix, S.D. Ross, B. Thiere, Transport of Mars-crossing asteroids from the quasi-Hilda region. Phys. Rev. Lett. 94, 231102 (2005) CrossRefGoogle Scholar
  7. 7.
    A. Deprit, Canonical transformations depending on a small parameter. Celest. Mech. 1, 12–30 (1969) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    P. Di Donato, J.J. Masdemont, P. Paglione, A.F. Prado, Low thrust transfers from the Earth to Halo orbits around the libration points of the Sun–Earth/Moon system, in Proceedings of COBEM 2007 (2007), 9 pp Google Scholar
  9. 9.
    M. Gidea, J.J. Masdemont, Geometry of homoclinic connections in a planar circular restricted three-body problem. Int. J. Bifurc. Chaos 17, 1151–1169 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    A. Giorgilli, A. Delshams, E. Fontich, L. Galgani, C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem. J. Differ. Equ. 77, 167–198 (1989) zbMATHCrossRefGoogle Scholar
  11. 11.
    G. Gómez, K. Howell, J.J. Masdemont, C. Simó, Station keeping strategies for translunar libration point orbits. Adv. Astron. Sci. 99, 949–967 (1998) Google Scholar
  12. 12.
    G. Gómez, A. Jorba, J.J. Masdemont, C. Simó, Dynamics and Mission Design near Libration Points, vol. 3, Advanced Methods for Collinear Points (World Scientific, Singapore, 2001), xvi+187 zbMATHGoogle Scholar
  13. 13.
    G. Gómez, W.S. Koon, M.W. Lo, J.E. Marsden, J.J. Masdemont, S.D. Ross, Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17, 1571–1606 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    G. Gómez, J. Llibre, R. Martínez, C. Simó, Dynamics and Mission Design near Libration Points, vol. 1, Fundamentals: The Case of Collinear Libration Points (World Scientific, Singapore, 2001), xi+443 Google Scholar
  15. 15.
    A. Jorba, J.J. Masdemont, Dynamics in the center manifold of the collinear points in the restricted three body problem. Physica D 132, 189–213 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    W.S. Koon, M.W. Lo, J.E. Marsden, S.D. Ross, Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10, 427–469 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    W.S. Koon, M.W. Lo, J.E. Marsden, S.D. Ross, Constructing a low energy transfer between Jovian Moons. Contemp. Math. Am. Math. Soc. 292, 129–145 (2001) MathSciNetCrossRefGoogle Scholar
  18. 18.
    M.W. Lo, S.D. Ross, The lunar L1 gateway: portal to the stars and beyond, in AIAA Space 2001 Conference. Albuquerque, New Mexico (2001) Google Scholar
  19. 19.
    J.E. Marsden, S.D. Ross, New methods in celestial mechanics and mission design. Bull. Am. Math. Soc. (New Ser.) 43, 43–73 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    J.J. Masdemont, High order expansions of invariant manifolds of libration point orbits with applications to mission design. Dyn. Syst. Int. J. 20, 59–113 (2005) MathSciNetzbMATHGoogle Scholar
  21. 21.
    M. Romero-Gómez, J.J. Masdemont, E. Athanassoula, C. García-Gómez, On the origin of rR 1 ring structures in barred galaxies. Astron. Astrophys. 453, 39–45 (2006) CrossRefGoogle Scholar
  22. 22.
    M. Romero-Gómez, J.J. Masdemont, E. Athanassoula, C. García-Gómez, The formation of spiral arms and rings in barred galaxies. Astron. Astrophys. 472, 63–75 (2007) CrossRefGoogle Scholar
  23. 23.
    M. Romero-Gómez, J.J. Masdemont, C. García-Gómez, E. Athanassoula, The role of the unstable equilibrium points in the transfer of matter in galactic potentials. Commun. Nonlinear Sci. Numer. Simul. 14, 4123–4138 (2009). MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    V. Szebehely, Theory of Orbits (Academic Press, San Diego, 1967) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Departament de Matemàtica Aplicada IUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations