Skip to main content

Damage Propagation in Composites – Multiscale Modeling and Optimization

  • Chapter
  • First Online:
Multiscale Methods in Computational Mechanics

Abstract

The paper addresses general solution concepts for multiscale analyses and structural optimization of composite structures under damage evolution. Fiber Reinforced Composites, in particular Fiber Reinforced Concrete, are chosen as model material. First we describe undamaged and damaged material interfaces as well as matrix cracks utilizing the eXtended Finite Element Method (XFEM) and Level Set methods. The next part focuses on a solution strategy based on the Variational Multiscale Method (VMM) allowing to describe localized long range failure mechanisms for which standard homogenization is not applicable anymore. Either continuum damage or the discrete cohesive crack model applying XFEM is inserted into the VMM framework. Finally material optimization is performed to obtain an optimal fiber layout maximizing structural ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.C. Brewer and P.A. Lagace, Quadratic stress criterion for initiation of delamination. Journal of Composite Materials, 22:1141–1155, 1988.

    Article  Google Scholar 

  2. I. Bruss and E. Ramm, Modeling of continuous curved crack surfaces in three dimensional composite structures. In Proc. of the Int. Conf. on Extended Finite Element Methods - Recent Developments and Applications, pp. 23–26http://www.ibb.unistuttgart.de/forschung/xfem/index.html2009

  3. M. Curbach and F. Jesse, Eigenschaften und Anwendung von Textilbeton. Beton- und Stahlbetonbau, 104:9–16, 2009.

    Article  Google Scholar 

  4. C. Daux, N. Moës, J. Dolbow, N. Sukumar, and T. Belytschko, Arbitrary branched and intersecting cracks with the extended finite element method. Int. J. Numer. Meth. Engrg., 48:1741–1760, 2000.

    Article  MATH  Google Scholar 

  5. C. Farhat, A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Meth. Engrg., 32:1205–1227, 1991.

    Article  MATH  Google Scholar 

  6. C. Farhat, I. Harari, and U. Hetmaniuk, The discontinuous enrichment method for multiscale analysis. Comp. Meth. Appl. Mech. Engrg., 192:3195–3209, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Fish and Z. Yuan, Multiscale enrichment based on partition of unity for nonperiodic fields and nonlinear problems. Comput. Mech., 40:249–259, 2007.

    Article  MATH  Google Scholar 

  8. J. Fish, Multiscale modeling and simulation of composite materials and structures. In: R. de Borst and E. Ramm (Eds.), Multiscale Methods in Computational Mechanics, Lecture Notes in Applied and Computational Mechanics. Springer, Dordrecht, 2010 (this volume).

    Google Scholar 

  9. V. Kouznetsova, M.G.D. Geers, and W.A.M. Brekelmans, Multi-scale constitutive modeling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Meth. Engrg., 54:1235–1260, 2002.

    Article  MATH  Google Scholar 

  10. T.J.R. Hughes, G.R. Feijóo, L. Mazzei, and J.B. Quincy, The variational multiscale method - A paradigm for computational mechanics. Comp. Meth. Appl. Mech. Engrg., 166:3–24, 1998.

    Article  MATH  Google Scholar 

  11. A. Hund, Hierarchische Mehrskalenmodellierung des Versagens von Werkstoffen mit Mikrostruktur, PhD Dissertation, Institut für Baustatik und Baudynamik, Universität Stuttgart, http://elib.uni-stuttgart.de/opus/frontdoor.php?source_opus=3108 2007.

  12. A. Hund and E. Ramm, Locality constraints within multiscale model for non-linear material behaviour. Int. J. Numer. Meth. Engrg., 70:1613–1632, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  13. T. Hettich, Diskontinuierliche Modellierung zur Versagensanalyse von Verbundmaterialien. PhD Dissertation, Institut für Baustatik und Baudynamik, Universität Stuttgart, 2007.

    Google Scholar 

  14. T. Hettich, A. Hund, and E. Ramm, Modeling of failure in composites by X-FEM and level sets within amultiscale framework. Comp. Meth. Appl. Mech. Engrg., 197:414–424, 2008.

    Article  MATH  Google Scholar 

  15. T. Hettich and E. Ramm, Interface material failure modeled by the extended finiteelement method and level sets. Comp. Meth. Appl. Mech. Engrg., 195:4753–4767, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  16. F. Jesse, N. Will, M. Curbach, and J. Hegger, Load-bearing behavior of textile-reinforced concrete. In: A. Dubey (Ed.), Textile-Reinforced Concrete, Proceedings of ACI Fall Convention, Kansas City, November 2005.

    Google Scholar 

  17. R. John and S.P. Shah, Mixed-mode fracture of concrete subjected to impact loading. ASCE J. Struct. Engrg., 116:585–602, 1990.

    Article  Google Scholar 

  18. J. Kato, Material optimization for fiber reinforced composites applying a damage formulation, PhD Dissertation, Institut für Baustatik und Baudynamik, Universität Stuttgarthttp://elib.uni-stuttgart.de/opus/volltexte/2010/5162/ 2010.

  19. J. Kato, A. Lipka, and E. Ramm, Multiphase material optimization for fiber reinforced composites with strain softening. Struct. Multidisc. Optim., 39:63–81, 2009.

    Article  Google Scholar 

  20. J. Kato and E. Ramm, Optimization of fiber geometry for fiber reinforced composites considering damage. In Finite Elements in Analysis and Design, in press, 2010.

    Google Scholar 

  21. M. Krüger, J. Ozbolt and H.W. Reinhardt, A discrete bond model for 3D analysis of textile reinforced and prestressed concrete elements. Otto-Graf-J., University of Stuttgart, 13:111–128, 2002.

    Google Scholar 

  22. J. Mazars and G. Pijaudier-Cabot, Continuum damage theory - Application to concrete. J. Engrg. Mech. ASCE, 115:345–365, 1989.

    Article  Google Scholar 

  23. N. Moës, M. Cloirec, P. Cartraud, and J.-F. Remacle, A computational approach to handle complex microstructure geometries. Comp. Meth. Appl. Mech. Engrg., 192:3163–3177, 2003.

    Article  MATH  Google Scholar 

  24. N. Moës and T. Belytschko, Extended finite element method for cohesive crack growth. Engrg. Fracture Mech., 69:813–833, 2002.

    Article  Google Scholar 

  25. H.S. Park and W.K. Liu, An introduction and tutorial on multiple-scale analysis in solids. Comp. Meth. Appl. Mech. Engrg., 193:1733–1772, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  26. S.N. Patnaik, J.D. Guptill, and L. Berke, Merits and limitations of optimality criteria method for structural optimization. Int. J. Numer. Meth. Engrg., 38:3087–3120, 1995.

    Article  MATH  Google Scholar 

  27. R.H.J. Peerlings, Enhanced damage modelling for fracture and fatigue. PhD Thesis, Eindhoven University of Technology, the Netherlands, 1999.

    Google Scholar 

  28. R.H.J. Peerlings, M.G.D. Geers, R. de Borst, and W.A.M. Brekelmans, A critical comparison of nonlocal and gradient-enhanced softening continua, Int. J. Solids & Structures, 38:7723–7746, 2001.

    Article  MATH  Google Scholar 

  29. J.J.C. Remmers, R. de Borst, and A. Needleman, A cohesive segments method for the simulation of crack growth. Comput. Mech., 31:69–77, 2003.

    Article  MATH  Google Scholar 

  30. K. Svanberg, The method of moving asymptotes - A new method for structural optimization. Int. J. Numer. Meth. Engrg., 24:359–373, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  31. N. Sukumar, D.L. Chopp, N. Moës, and T. Belytschko, Modeling holes and inclusions by level sets in the extended finite-element method. Comp. Meth. Appl. Mech. Engrg., 190:6183–6200, 2001.

    Article  MATH  Google Scholar 

  32. G. Ventura, E. Budyn, and T. Belytschko, Vector level sets for the description of propagating cracks in finite elements. Int. J. Numer. Meth. Engrg., 58:1571–1592, 2003.

    Article  MATH  Google Scholar 

  33. J.H.P. Vree, W.A.M. Brekelmans, and M.A.J. van Gils, Comparison of nonlocal approaches in continuum damage mechanics. Computers & Structures, 55:581–588, 1995.

    Article  MATH  Google Scholar 

  34. G.N. Wells and L.J. Sluys, A new method for modelling cohesive cracks using finite elements. Int. J. Numer. Meth. Engrg., 50:2667–2682, 2001.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekkehard Ramm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ramm, E., Erhart, A., Hettich, T., Bruss, I., Hilchenbach, F., Kato, J. (2011). Damage Propagation in Composites – Multiscale Modeling and Optimization. In: de Borst, R., Ramm, E. (eds) Multiscale Methods in Computational Mechanics. Lecture Notes in Applied and Computational Mechanics, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9809-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9809-2_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9808-5

  • Online ISBN: 978-90-481-9809-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics