Advertisement

Quality and Equity in Mathematics Education: A Swedish Perspective

  • Inger Wistedt
  • Manya Raman
Chapter

Abstract

Discussions about quality and equity in education around the world often focus on the disadvantaged, the students for whatever reason do not have the resources to make the most of public education, or to get an education at all. In Sweden, where there is a fairly even economic playing field, the discussion—which is not always made public—addresses another type of inequity, namely that bright and talented students are not given sufficient education, particularly in math and science, to help them reach their potential. We describe some of the historical and cultural background for this inequity, and offer a modest, but not unbiased, account of what we claim is a false dilemma involved in promoting excellence in a democratic society.

Keywords

Egalitarianism Democracy Historical perspective Mathematics education Sweden Talent 

References

  1. Aristotle. (350 B.C.). Nicomachean Ethics (trans: Ross, W. D.). Constitution Society: Liberty Library of Constitutional Classics, I.3. http://www.constitution.org/ari/ethic_00.htm. Accessed 4 Jan 2010.
  2. Bentley, P.-O. (2003). Mathematics teachers and their teaching. A survey study. Göteborg Studies in Educational Sciences 181. Göteborg: Acta Universitatis Gothoburgensis.Google Scholar
  3. Bergqvist, K., & Säljö, R. (2008). Learning to plan. In J. van der Linden & P. Renshaw (Eds.), Dialogic Learning. Shifting perspectives to learning, instruction and teaching (pp. 109–124). The Netherlands: Springer.Google Scholar
  4. Blomhøj, M., & Valero, P (2006). Vanskeligheder i/med matematiklæring—behov av øget forskning [Difficulties in/with mathematics—need for enhanced research]. Nordic Studies in Mathematics Education, 11(4), 1–6.Google Scholar
  5. Edfeldt, Å. W., & Wistedt, I. (2009). High ability education in Sweden: The Swedish model. In T. Balchin, B. Hymer, & D. Matthews (Eds.), The Routledge companion to gifted education (pp. 76–83). London: Routledge.Google Scholar
  6. Engström, A. (1999). Specialpedagogiska frågeställningar i matematik: en introduktion. (Special educational issues in mathematics: An introduction). Örebro universitet: Pedagogiska institutionen.Google Scholar
  7. Husén, T. (1965). Educational change in Sweden. Comparative Education, 1(3), 181–191.CrossRefGoogle Scholar
  8. Husén, T. (2002). Begåvningsreserven då och nu [The Ability Reserve now and then]. Pedagogisk forskning i Sverige, 7(3), 164–167.Google Scholar
  9. Husén, T., & Härnqvist, K. (2000). Begåvningsreserven. En återblick på ett halvsekels forskning och debatt (The Ability Reserve. A retrospective view of half a century’s discussion and debate). Uppsala: Föreningen för svensk undervisningshistoria.Google Scholar
  10. Högskoleverket. (2008a). (Swedish National Agency for Higher Education). Statistiska meddelanden UF 20 SM 0802: Universitet och högskolor. Högskolenybörjare 2007/08 och doktorandnybörjare 2006/07 efter föräldrarnas utbildningsnivå (Higher Education. Level of parental education among university entrants 2007/08 and first time students at third circel studies 2006/07).Google Scholar
  11. Högskoleverket. (2008b). (Swedish National Agency for Higher Education). Analys nr 2008/11: Fortsatt ökning av antalet nybörjare vid universitet och högskolor (Continued increase of entrants to higher education). Stockholm: Högskoleverket.Google Scholar
  12. Högskoleverket. (2008c). (Swedish National Agency for Higher Education). Statistiska meddelanden UF 20 SM 0801: Universitet och högskolor. Studenter och examina i grundutbildningen 2006/08 (Higher education. Students and graduated students in undergraduate education 2006/2007).Google Scholar
  13. Isling, Å. (1974). Vägen till en demokratisk skola: Skolpolitik och skolreformer i Sverige från 1880–1970-talet (The path to a democratic school: School policy and school reforms from the 1880’s to the 1970’s). Stockholm: Prisma.Google Scholar
  14. Kaiserfeld, T. (2008). The persistent differentiation—the education commission’s work 1724–1778. CESIS. Electronic Working Paper Series No 113. http://ideas.repec.org/cgi-bin/htsearch?q=Kaiserfeld&cmd=Search%21. Accessed 5 Nov 2010.
  15. Lampert, M. (1990). When the problem is not the questions and the solution is not the answer: Mathematical knowing and teaching. American Educational Research Journal, 27(1), 29–63.Google Scholar
  16. Lithner, J. (2000). Mathematical reasoning in task solving. Educational Studies in Mathematics, 41, 165–190.CrossRefGoogle Scholar
  17. Magne, O. (2001). Literature on special educational needs in mathematics: A bibliography with some comments. Malmö: Lärarhögskolan.Google Scholar
  18. Magne, O. (2006). Historical aspects on special education in mathematics. Nomad, 11(4), 7–35.Google Scholar
  19. Mönks, F. J., Heller, K. A., & Passow, A. H. (2000). The study of giftedness: Reflections on where we are and where we are going. In K. A. Heller, F. J. Mönks, R. J. Sternberg, & R. F. Sobotnik (Eds.), International handbook of giftedness and talent (2nd ed.). (pp. 833–852). Amsterdam: Elsevier.Google Scholar
  20. Piaget, J. (1993). Jan Amos Comenius (1592–1670). Prospects, 23(1–2), 173–196. (UNESCO, International Bureau of Education, 1999).CrossRefGoogle Scholar
  21. Prop. 2002/03:1, 15. Budgetproposition för 2003, 15. Bilaga UO16. (The Swedish Budget Bill 2003, Appendix UO16). Stockholm: Regeringskansliet.Google Scholar
  22. Regeringskansliet (The Swedish Government). (2008). PM 2008-05-26: Inrättande av försöksverksamhet med riksrekryterande gymnasial spetsutbildning (Establishing experimental work with nation-wide recruiting advanced-placement tracks at the upper secondary level). http://www.regeringen.se/sb/d/10120/a/106291. Accessed 5 Jan 2010.
  23. Rubinstein, R. L., & Tallberg B. I. (2000). Den svenska skolan i det mångkulturella samhället—Konsekvenser för lärarutbildningen (The Swedish school in the multicultural society—Consequences for teacher education). Malmö: Malmö högskola.Google Scholar
  24. Siegel, A. (2004). Telling lessons from the TIMSS videotape. http://www.cs.nyu.edu/faculty/siegel/ST11.pdf. Accessed 30 Jan 2010.
  25. Sjöberg, G. (2006). Om det inte är dyskalkyli—vad är det då? (If it is not dyscalculia—then what is it?). Umeå University: Department of Mathematics Technology and Science Education.Google Scholar
  26. Sjöstrand, W. (1970). Pedagogiska grundproblem i historisk belysning (Educational basic questions in the light of history). Lund: Gleerups.Google Scholar
  27. Skolverket (Swedish Board of Education). (2003). Lusten att lära—med fokus på matematik. Rapport nr. 221 (The urge to learn—with a focus on mathematics. Report No 221). Stockholm: Skolverket.Google Scholar
  28. Skolverket (Swedish Board of Education). (2005). En sammanfattning av TIMSS 2003. Särtryck av Rapport nr. 255 (A summary of TIMSS 2003. Off-print of Report No 255). Stockholm: Skolverket.Google Scholar
  29. Skolverket (Swedish Board of Education). (2008). TIMSS 2007. Rapport nr. 323. (TIMSS 2007. Report No 323). Stockholm: Skolverket.Google Scholar
  30. Sund, K. (2006). Detracking Swedish secondary schools: Any losers, any winners? Swedish Institute for Social Research (SOFI), Working Paper No. 2.Google Scholar
  31. Tomasson, R. (1965). From elitism to egalitarianism in Swedish education. Sociology of Education, 38, 203–223.CrossRefGoogle Scholar
  32. Wistedt, I. (2008). Pedagogik för elever med förmåga och fallenhet för matematik (Gifted education in mathematics). Resultatdialog 2008. Forskning inom utbildningsvetenskap (Result dialogue 2008. Research in Educational Sciences) (pp. 132–136). Vetenskapsrådets rapportserie (Reports from The Swedish Research Foundation) 12:2008. Stockholm: Vetenskapsrådet.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Mathematics and Science EducationStockholm UniversityStockholmSweden

Personalised recommendations