Astrobiology: From Extremophiles in the Solar System to Extraterrestrial Civilizations

Chapter
Part of the Analecta Husserliana book series (ANHU, volume 107)

Abstract

Life on Earth is ubiquitous. Most of the organisms that we know thrive in normal environments that we consider to be ambient habitats. Extremophiles are among the microorganisms living on the edge of life under severe conditions. In recent years microorganisms have been discovered living in extreme environments, such as very high temperature (up to 115°C), and also at very low temperature (∼ minus 20°C). In addition, they can also withstand a variety of stresses, amongst them we mention both ends of the pH range; very strong acidity vs. high alkalinity; saturated salt solutions and high hydrostatic pressure. Astrobiology considers the possibility that extraterrestrial civilizations may be present in some exoplanets in the large suite that has been discovered so far. The instruments of research are radio telescopes. Astrobiology also raises the possibility of life elsewhere in the Solar System. (The most promising examples are Mars, Europa, and possibly Titan and Enceladus). We suggest that if microbial communities can thrive under extreme conditions on Earth, they could also emerge on extraterrestrial environments.

References

  1. Adam D. 2000. Hardcore hibernation. Published online. Nature 19 October. doi:10.1038/news001019-9.Google Scholar
  2. Allen, M.B. 1959. Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch Mikrobiol Berlin, Heidelberg 32: 270–277.CrossRefGoogle Scholar
  3. Arahal, D.R., M.C. Marquex, B.E. Volcani, K.H. Schleifer, and A. Ventosa. 1999. Bacillus marismortui sp. nov., a new moderately halophilic species from the Dead Sea. International Journal of Systematic and Evolutionary Microbiology 49: 521–530.Google Scholar
  4. Atreya, S.K., P.R. Mahaffy, and A.S. Wong. 2007. Methane and related trace species on Mars: Origin, loss, implications for life, and habitability. Planetary and Space Science 55: 358–369.CrossRefGoogle Scholar
  5. Bertolani, R., R. Guidetti, K.I. Jönsson, T. Altiero, D. Boschini, and L. Rebecchi. 2004. Experiences with dormancy in tardigrades. Journal of Limnology 63(Suppl 1): 16–25.Google Scholar
  6. Cano, R., and M. Borucki. 1995. Revival and identification of bacterial spores in 25 to 40 million year old Dominican amber. Science 268: 1060–1064.CrossRefGoogle Scholar
  7. Chela-Flores, J. 1998. A search for extraterrestrial eukaryotes: Physical and biochemical aspects of exobiology. Origins of Life and Evolution of the Biosphere 28: 583–596. http://www.ictp.trieste.it/~chelaf/searching_for_extraterr.html
  8. Chela-Flores, J. 2000. Testing the Drake Equation in the solar system. In A new era in astronomy, eds. G.A. Lemarchand and K. Meech, vol. 213, 402–410, ASP Conference Series. Genentech: San Francisco. http://www.ictp.trieste.it/~chelaf/TestingDrakeEq.html
  9. Chela-Flores, J., and N. Kumar. 2008. Returning to Europa: Can traces of surficial life be detected? International Journal of Astrobiology 7(3): 263–269 (copyright holder: Cambridge University Press). http://www.ictp.it/~chelaf/JCFKumar.pdf
  10. Coustenis, A., and F.W Taylor. 2008. Titan exploring an earthlike world. 2nd ed. Singapore: WSP, 412 pp.Google Scholar
  11. Doran, P.T., W. Stone, J. Priscu, C. McKay, A. Johnson, and B. Chen. 2007. Environmentally non-disturbing under-ice robotic Antarctic explorer (ENDURANCE). American Geophysical Union, Fall Meeting, abstract #P52A-05.Google Scholar
  12. Ekers, R.D., D. Kent Cullers, J. Billingham, and L.K. Scheffer. 2002, SETI 2020: A roadmap for the search for extraterrestrial intelligence. Mountain View: SETI Press, 549 pp.Google Scholar
  13. Fewer, D., T. Friedl and B. Büdel. 2002. Chroococcidiopsis and heterocyst differentiating cyanobacteria are each others closest living relatives. Molecular Phylogenetics and Evolution 23: 82–90.CrossRefGoogle Scholar
  14. Goldstein, B., and M. Blaxter. 2002. Quick guide: Tardigrades. Current Biology 12: R475.CrossRefGoogle Scholar
  15. Grasset, O., J.-P. Lebreton, M. Blanc, M. Dougherty, C. Erd, R. Greeley, B. 2009. Pappalardo and the joint science definition team, “The Jupiter Ganymede Orbiter as part of the ESA/NASA Europa jupiter system mission (EJSM),” EPSC Abstracts 4: EPSC2009-784, European Planetary Science Congress, Rome.Google Scholar
  16. Grom, J. 2009 Ancient ecosystem discovered beneath Antarctic glacier. Science Now. Daily News, 16 April.Google Scholar
  17. Horikawa, D.D. 2008. The Tradigrade Ramazzottium varieornatus as a model animal for Astrobiological studies. Biological Sciences in Space 22(3): 93–98.CrossRefGoogle Scholar
  18. Horvath, J., F. Carsey, J. Cutts, J. Jones, E. Johnson, B., Landry, L. Lane, G. Lynch, J. Chela-Flores, T.-W. Jeng, and A. Bradley. 1997. Searching for ice and ocean biogenic activity on Europa and Earth. In Instruments, methods and missions for investigation of extraterrestrial microorganisms, ed. R.B. Hoover, 490–500. SPIE Proceedings, 3111, San Diego. http://www.ictp.it/~chelaf/searching_for_ice.html
  19. Hoyle, B. 2001. Ancient bacteria may be oldest life form. American Society for Microbiology News 67. http://newsarchive.asm.org/jan01/topic4.asp.
  20. Jönsson, K.I., E. Rabbow, R.O. Schill, M. Harms-Ringdahl, and P. Rettberg. 2008. Tardigrades survive exposure to space in low Earth orbit. Current Biology 18: R729–R731.CrossRefGoogle Scholar
  21. Karl, D.M., D.F. Bird, K. Björkman, T. Houlihan, R. Shackelford, and L. Tupas. 1999. Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286: 2144–2147.CrossRefGoogle Scholar
  22. Lefèvre, F., and F. Forget. 2009. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460: 720–723.CrossRefGoogle Scholar
  23. Mikucki, J.A., and J.C. Priscu. 2007. Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Applied and Environmental Microbiology 73: 4029–4039.CrossRefGoogle Scholar
  24. Mikucki, J.A., A. Pearson, D.T. Johnston, A.V. Turchyn, J. Farquhar, D.P. Schrag, A.D. Anbar, J.C. Priscu, and P.A. Lee. 2009. A contemporary microbially maintained subglacial ferrous ‘ocean’. Science 324: 397–400.CrossRefGoogle Scholar
  25. Nickle, D.C., G.H. Learn, M.W. Rain, J.I. Mullins, and J.E. Mittler. 2002. Curiously modern DNA for a ‘250 Million-Year-Old’ bacterium. Journal of Molecular Evolution 54: 134–137.CrossRefGoogle Scholar
  26. Oard, M.J. 2001. Aren’t 250 million year old live bacteria a bit much? Creation Ministries International, Article 2415.Google Scholar
  27. Oren, A. 1988. The microbial ecology of the Dead Sea. In Advances in microbial ecology, ed. K.C. Marshall, vol. 10, 193–229. New York: Plenum Publishing Company.Google Scholar
  28. Postberg, F., S. Kempf, J. Schmidt, N. Brilliantov, A. Beinsen, B. Abel, U. Buck, and R. Srama. 2009. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459: 1098–1101.CrossRefGoogle Scholar
  29. Seckbach, J. 2010. Overview of Cyanidian biology. In Red algae in genome age, eds. J. Seckbach and D. Chapman. Dordrecht: Springer, pp. 343–354.Google Scholar
  30. Siegert, M.J., J.C. Ellis-Evans, M. Tranter, C. Mayer, J. Petit, A. Salamantin, and J.C. Priscu. 2001. Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature (London) 414: 603–609.CrossRefGoogle Scholar
  31. Singer, E. 2003. Vital clues from Europa. New Scientist Magazine 2414: 22–23. http://www.ictp.it/~chelaf/VitalClues.pdf
  32. Sleep, N.H. 1994. Martian plate tectonics. Journal of Geophysical Research 99: 5639–5655.CrossRefGoogle Scholar
  33. Smith, A., I.A. Crawford, R.A. Gowen, A.J. Ball, S.J. Barber, P. Church, A.J. Coates, Y. Gao, A.D. Griffiths, A. Hagermann, K.H. Joy, A. Phipps, W.T. Pike, R. Scott, S. Sheridan, M. Sweeting, D. Talboys, V. Tong, N. Wells, J. Biele, J. Chela-Flores, B. Dabrowski, J. Flannagan, M. Grande, J. Grygorczuk, G. Kargl, O.B. Khavroshkin, G. Klingelhoefer, M. Knapmeyer, W. Marczewski, S. McKenna-Lawlor, L. Richter, D.A. Rothery, K. Seweryn, S. Ulamec, R. Wawrzaszek, M. Wieczorek, I.P. Wright, and M. Sims. 2008. LunarEX – A proposal to CosmicVision. Experimental Astronomy. 10.1007/s10686-008-9109-6. http://www.ictp.it/~chelaf/Penetrator.pdf
  34. Vreeland, R.H., W.D. Rosenzweig, and D.W. Powers. 2000. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 470: 1075–1077.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Hebrew University of JerusalemJerusalemIsrael
  2. 2.The Abdus Salam ICTPTriesteItalia
  3. 3.Instituto de Estudios Avanzados, IDEACaracasVenezuela

Personalised recommendations