Advertisement

Exercise and Nutritional Interventions to Combat Age-Related Muscle Loss

  • René Koopman
  • Lex B. Verdijk
  • Luc J. C. van LoonEmail author
Chapter

Abstract

Aging is accompanied by a progressive loss of skeletal muscle mass and strength, leading to the loss of functional capacity and an increased risk of developing chronic metabolic diseases such as diabetes. The age-related loss of skeletal muscle mass must be due to a chronic disruption in the balance between muscle protein synthesis and degradation. In addition, it has been suggested that a decline in the number of satellite cells (SC) and/or their ability to become activated can contribute to the development of sarcopenia. In healthy active older individuals, there does not seem to be a disturbance in muscle protein metabolism in the fasted (basal) state. Consequently, it has been proposed that older muscle has a deficit in the ability to regulate the protein synthetic response to anabolic stimuli, such as food intake and physical activity. Indeed, recent data suggest that the dose-response relationship between myofibrillar protein synthesis and the availability of essential amino acids and/or resistance exercise intensity is shifted down and to the right in elderly humans. This so-called anabolic resistance is now believed to represent a key factor responsible for the age-related decline in skeletal muscle mass. Although physical activity and/or exercise stimulate muscle protein synthesis in both the young and elderly, the hypertrophic response largely depends on the timed administration of amino acids and/or protein prior to, during, and/or after exercise. However, prolonged resistance type exercise training has been shown to be effective as a therapeutic strategy to augment skeletal muscle mass, increase muscle SC content, and improve functional performance in the elderly. The latter shows that the ability to increase muscle mass is preserved up to very old age. More research is warranted to elucidate the interaction between nutrition, exercise and the skeletal muscle adaptive response. The latter is needed to define more effective strategies that will maximize the therapeutic benefits of lifestyle intervention in the elderly.

Keywords

Sarcopenia Nutrition Exercise training Muscle hypertrophy 

Notes

Acknowledgements

Dr. Koopman was supported by a Rubicon Fellowship from the Netherlands Organisation for Scientific Research (NWO). Dr. Koopman is a C.R. Roper Senior Research Fellow of the Faculty of Medicine, Dentistry and Health Sciences at the University of Melbourne (Victoria, Australia).

References

  1. Ades, P. A., Ballor, D. L., Ashikaga, T., Utton, J. L., Nair, K. S. (1996). Weight training improves walking endurance in healthy elderly persons. Annals of Internal Medicine, 124, 568–572.PubMedGoogle Scholar
  2. Arnal, M. A., Mosoni, L., Boirie, Y., Houlier, M. L., Morin, L., Verdier, E., Ritz, P., Antoine, J. M., Prugnaud, J., Beaufrere, B., Mirand, P. P. (1999). Protein pulse feeding improves protein retention in elderly women. The American Journal of Clinical Nutrition, 69, 1202–1208.PubMedGoogle Scholar
  3. Arnal, M. A., Mosoni, L., Boirie, Y., Houlier, M. L., Morin, L., Verdier, E., Ritz, P., Antoine, J. M., Prugnaud, J., Beaufrere, B., Mirand, P. P. (2000). Protein feeding pattern does not affect protein retention in young women. The Journal of Nutrition, 130, 1700–1704.PubMedGoogle Scholar
  4. Balagopal, P., Rooyackers, O. E., Adey, D. B., Ades, P. A., Nair, K. S. (1997). Effects of aging on in vivo synthesis of skeletal muscle myosin heavy-chain and sarcoplasmic protein in humans. The American Journal of Physiology, 273, E790–E800.PubMedGoogle Scholar
  5. Bamman, M. M., Hill, V. J., Adams, G. R., Haddad, F., Wetzstein, C. J., Gower, B. A., Ahmed, A., Hunter, G. R. (2003). Gender differences in resistance-training-induced myofiber hypertrophy among older adults. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 58, 108–116.Google Scholar
  6. Bassey, E. J., Fiatarone, M. A., O’Neill, E. F., Kelly, M., Evans, W. J., Lipsitz, L. A. (1992). Leg extensor power and functional performance in very old men and women. Clinical Science (London), 82, 321–327.Google Scholar
  7. Baumgartner, R. N., Koehler, K. M., Gallagher, D., Romero, L., Heymsfield, S. B., Ross, R. R., Garry, P. J., Lindeman, R. D. (1998). Epidemiology of sarcopenia among the elderly in New Mexico. American Journal of Epidemiology, 147, 755–763.PubMedGoogle Scholar
  8. Beaufrere, B., Dangin, M., Boirie, Y. (2000). The ‘fast’ and ‘slow’ protein concept. Nestlé Nutrition Institute Workshop Series: Clinical & Performance Program, 3, 121–131. discussion 131–133.CrossRefGoogle Scholar
  9. Beelen, M., Koopman, R., Gijsen, A. P., Vandereyt, H., Kies, A. K., Kuipers, H., Saris, W. H., van Loon, L. J. (2008a). Protein coingestion stimulates muscle protein synthesis during resistance-type exercise. American Journal of Physiology. Endocrinology and Metabolism, 295, E70–E77.PubMedCrossRefGoogle Scholar
  10. Beelen, M., Tieland, M., Gijsen, A. P., Vandereyt, H., Kies, A. K., Kuipers, H., Saris, W. H., Koopman, R., van Loon, L. J. (2008b). Coingestion of carbohydrate and protein hydrolysate stimulates muscle protein synthesis during exercise in young men, with no further increase during subsequent overnight recovery. The Journal of Nutrition, 138, 2198–2204.PubMedCrossRefGoogle Scholar
  11. Biolo, G., Maggi, S. P., Williams, B. D., Tipton, K. D., Wolfe, R. R. (1995). Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. The American Journal of Physiology, 268, E514–E520.PubMedGoogle Scholar
  12. Biolo, G., Tipton, K. D., Klein, S., Wolfe, R. R. (1997). An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. The American Journal of Physiology, 273, E122–E129.PubMedGoogle Scholar
  13. Bohe, J., Low, A., Wolfe, R. R., Rennie, M. J. (2003). Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study. Journal de Physiologie, 552, 315–324.CrossRefGoogle Scholar
  14. Boirie, Y., Fauquant, J., Rulquin, H., Maubois, J. L., Beaufrere, B. (1995). Production of large amounts of [13C] leucine-enriched milk proteins by lactating cows. The Journal of Nutrition, 125, 92–98.PubMedGoogle Scholar
  15. Boirie, Y., Gachon, P., Corny, S., Fauquant, J., Maubois, J. L., Beaufrere, B. (1996). Acute postprandial changes in leucine metabolism as assessed with an intrinsically labeled milk protein. The American Journal of Physiology, 271, E1083–E1091.PubMedGoogle Scholar
  16. Boirie, Y., Dangin, M., Gachon, P., Vasson, M. P., Maubois, J. L., Beaufrere, B. (1997a). Slow and fast dietary proteins differently modulate postprandial protein accretion. Proceedings of the National Academy of Sciences of the United States of America, 94, 14930–14935.PubMedCrossRefGoogle Scholar
  17. Boirie, Y., Gachon, P., Beaufrere, B. (1997b). Splanchnic and whole-body leucine kinetics in young and elderly men. The American Journal of Clinical Nutrition, 65, 489–495.PubMedGoogle Scholar
  18. Borsheim, E., Tipton, K. D., Wolf, S. E., Wolfe, R. R. (2002). Essential amino acids and muscle protein recovery from resistance exercise. American Journal of Physiology. Endocrinology and Metabolism, 283, E648–E657.PubMedGoogle Scholar
  19. Borsheim, E., Cree, M. G., Tipton, K. D., Elliott, T. A., Aarsland, A., Wolfe, R. R. (2004). Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise. Journal of Applied Physiology, 96, 674–678.PubMedCrossRefGoogle Scholar
  20. Brose, A., Parise, G., Tarnopolsky, M. A. (2003). Creatine supplementation enhances isometric strength and body composition improvements following strength exercise training in older adults. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 58, 11–19.Google Scholar
  21. Brown, M., Sinacore, D. R., Host, H. H. (1995). The relationship of strength to function in the older adult. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 50(Spec No), 55–59.Google Scholar
  22. Campbell, W. W. & Evans, W. J. (1996). Protein requirements of elderly people. European Journal of Clinical Nutrition, 50(Suppl 1), S180–S183. discussion S183–185.PubMedGoogle Scholar
  23. Campbell, W. W. & Leidy, H. J. (2007). Dietary protein and resistance training effects on muscle and body composition in older persons. Journal of the American College of Nutrition, 26, 696S–703S.PubMedGoogle Scholar
  24. Campbell, W. W., Crim, M. C., Young, V. R., Joseph, L. J., Evans, W. J. (1995). Effects of resistance training and dietary protein intake on protein metabolism in older adults. The American Journal of Physiology, 268, E1143–E1153.PubMedGoogle Scholar
  25. Campbell, W. W., Trappe, T. A., Wolfe, R. R., Evans, W. J. (2001). The recommended dietary allowance for protein may not be adequate for older people to maintain skeletal muscle. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 56, M373–M380.Google Scholar
  26. Campbell, W. W., Trappe, T. A., Jozsi, A. C., Kruskall, L. J., Wolfe, R. R., Evans, W. J. (2002). Dietary protein adequacy and lower body versus whole body resistive training in older humans. Journal de Physiologie, 542, 631–642.CrossRefGoogle Scholar
  27. Campbell, W. W., Johnson, C. A., Mccabe, G. P., Carnell, N. S. (2008). Dietary protein requirements of younger and older adults. The American Journal of Clinical Nutrition, 88, 1322–1329.PubMedGoogle Scholar
  28. Carey, K. A., Farnfield, M. M., Tarquinio, S. D., Cameron-Smith, D. (2007). Impaired expression of Notch signaling genes in aged human skeletal muscle. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 62, 9–17.Google Scholar
  29. Charette, S. L., Mcevoy, L., Pyka, G., Snow-Harter, C., Guido, D., Wiswell, R. A., Marcus, R. (1991). Muscle hypertrophy response to resistance training in older women. Journal of Applied Physiology, 70, 1912–1916.PubMedGoogle Scholar
  30. Charifi, N., Kadi, F., Feasson, L., Denis, C. (2003). Effects of endurance training on satellite cell frequency in skeletal muscle of old men. Muscle and Nerve, 28, 87–92.PubMedCrossRefGoogle Scholar
  31. Chesley, A., Macdougall, J. D., Tarnopolsky, M. A., Atkinson, S. A., Smith, K. (1992). Changes in human muscle protein synthesis after resistance exercise. Journal of Applied Physiology, 73, 1383–1388.PubMedGoogle Scholar
  32. Conboy, I. M. & Rando, T. A. (2002). The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Developmental Cell, 3, 397–409.PubMedCrossRefGoogle Scholar
  33. Costa, A., Dalloul, H., Hegyesi, H., Apor, P., Csende, Z., Racz, L., Vaczi, M., Tihanyi, J. (2007). Impact of repeated bouts of eccentric exercise on myogenic gene expression. European Journal of Applied Physiology, 101, 427–436.PubMedCrossRefGoogle Scholar
  34. Cuthbertson, D., Smith, K., Babraj, J., Leese, G., Waddell, T., Atherton, P., Wackerhage, H., Taylor, P. M., Rennie, M. J. (2005). Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. The FASEB Journal, 19, 422–424.PubMedGoogle Scholar
  35. Dangin, M., Boirie, Y., Garcia-Rodenas, C., Gachon, P., Fauquant, J., Callier, P., Ballevre, O., Beaufrere, B. (2001). The digestion rate of protein is an independent regulating factor of postprandial protein retention. American Journal of Physiology. Endocrinology and Metabolism, 280, E340–E348.PubMedGoogle Scholar
  36. Dangin, M., Boirie, Y., Guillet, C., Beaufrere, B. (2002). Influence of the protein digestion rate on protein turnover in young and elderly subjects. The Journal of Nutrition, 132, 3228S–3233S.PubMedGoogle Scholar
  37. Dangin, M., Guillet, C., Garcia-Rodenas, C., Gachon, P., Bouteloup-Demange, C., Reiffers-Magnani, K., Fauquant, J., Ballevre, O., Beaufrere, B. (2003). The rate of protein digestion affects protein gain differently during aging in humans. Journal de Physiologie, 549, 635–644.CrossRefGoogle Scholar
  38. Dedkov, E. I., Borisov, A. B., Wernig, A., Carlson, B. M. (2003). Aging of skeletal muscle does not affect the response of satellite cells to denervation. The Journal of Histochemistry and Cytochemistry, 51, 853–863.PubMedGoogle Scholar
  39. Dreyer, H. C., Blanco, C. E., Sattler, F. R., Schroeder, E. T., Wiswell, R. A. (2006). Satellite cell numbers in young and older men 24 hours after eccentric exercise. Muscle and Nerve, 33, 242–253.PubMedCrossRefGoogle Scholar
  40. Dreyer, H. C., Drummond, M. J., Pennings, B., Fujita, S., Glynn, E. L., Chinkes, D. L., Dhanani, S., Volpi, E., Rasmussen, B. B. (2008). Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. American Journal of Physiology. Endocrinology and Metabolism, 294, E392–E400.PubMedCrossRefGoogle Scholar
  41. Drummond, M. J., Bell, J. A., Fujita, S., Dreyer, H. C., Glynn, E. L., Volpi, E., Rasmussen, B. B. (2008a). Amino acids are necessary for the insulin-induced activation of mTOR/S6K1 signaling and protein synthesis in healthy and insulin resistant human skeletal muscle. Clinical Nutrition, 27, 447–456.PubMedCrossRefGoogle Scholar
  42. Drummond, M. J., Dreyer, H. C., Pennings, B., Fry, C. S., Dhanani, S., Dillon, E. L., Sheffield-Moore, M., Volpi, E., Rasmussen, B. B. (2008b). Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging. Journal of Applied Physiology, 104, 1452–1461.PubMedCrossRefGoogle Scholar
  43. Edstrom, E., Ulfhake, B. (2005). Sarcopenia is not due to lack of regenerative drive in senescent skeletal muscle. Aging Cell, 4, 65–77.PubMedCrossRefGoogle Scholar
  44. Esmarck, B., Andersen, J. L., Olsen, S., Richter, E. A., Mizuno, M., Kjaer, M. (2001). Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. Journal de Physiologie, 535, 301–311.CrossRefGoogle Scholar
  45. Evans, W. J. (1995). Effects of exercise on body composition and functional capacity of the elderly. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 50(Spec No), 147–150.Google Scholar
  46. Fedele, M. J., Hernandez, J. M., Lang, C. H., Vary, T. C., Kimball, S. R., Jefferson, L. S., Farrell, P. A. (2000). Severe diabetes prohibits elevations in muscle protein synthesis after acute resistance exercise in rats. Journal of Applied Physiology, 88, 102–108.PubMedGoogle Scholar
  47. Ferri, A., Scaglioni, G., Pousson, M., Capodaglio, P., van Hoecke, J., Narici, M. V. (2003). Strength and power changes of the human plantar flexors and knee extensors in response to resistance training in old age. Acta Physiologica Scandinavica, 177, 69–78.PubMedCrossRefGoogle Scholar
  48. Fiatarone, M. A., Marks, E. C., Ryan, N. D., Meredith, C. N., Lipsitz, L. A., Evans, W. J. (1990). High-intensity strength training in nonagenarians. Effects on skeletal muscle. Jama, 263, 3029–3034.PubMedCrossRefGoogle Scholar
  49. Fiatarone, M. A., O’Neill, E. F., Ryan, N. D., Clements, K. M., Solares, G. R., Nelson, M. E., Roberts, S. B., Kehayias, J. J., Lipsitz, L. A., Evans, W. J. (1994). Exercise training and nutritional supplementation for physical frailty in very elderly people. The New England Journal of Medicine, 330, 1769–1775.PubMedCrossRefGoogle Scholar
  50. Fiatarone Singh, M. A., Bernstein, M. A., Ryan, A. D., O’Neill, E. F., Clements, K. M., Evans, W. J. (2000). The effect of oral nutritional supplements on habitual dietary quality and quantity in frail elders. The Journal of Nutrition, Health and Aging, 4, 5–12.Google Scholar
  51. Forbes, G. B. & Reina, J. C. (1970). Adult lean body mass declines with age: some longitudinal observations. Metabolism, 19, 653–663.PubMedCrossRefGoogle Scholar
  52. Freyssenet, D., Berthon, P., Denis, C., Barthelemy, J. C., Guezennec, C. Y., Chatard, J. C. (1996). Effect of a 6-week endurance training programme and branched-chain amino acid supplementation on histomorphometric characteristics of aged human muscle. Archives of Physiology and Biochemistry, 104, 157–162.PubMedCrossRefGoogle Scholar
  53. Frontera, W. R., Meredith, C. N., O’Reilly, K. P., Knuttgen, H. G., Evans, W. J. (1988). Strength conditioning in older men: skeletal muscle hypertrophy and improved function. Journal of Applied Physiology, 64, 1038–1044.PubMedGoogle Scholar
  54. Frontera, W. R., Meredith, C. N., O’Reilly, K. P., Evans, W. J. (1990). Strength training and determinants of VO2max in older men. Journal of Applied Physiology, 68, 329–333.PubMedGoogle Scholar
  55. Frontera, W. R., Hughes, V. A., Lutz, K. J., Evans, W. J. (1991). A cross-sectional study of muscle strength and mass in 45- to 78-yr-old men and women. Journal of Applied Physiology, 71, 644–650.PubMedGoogle Scholar
  56. Frontera, W. R., Hughes, V. A., Fielding, R. A., Fiatarone, M. A., Evans, W. J., Roubenoff, R. (2000). Aging of skeletal muscle: a 12-yr longitudinal study. Journal of Applied Physiology, 88, 1321–1326.PubMedGoogle Scholar
  57. Frontera, W. R., Hughes, V. A., Krivickas, L. S., Kim, S. K., Foldvari, M., Roubenoff, R. (2003). Strength training in older women: early and late changes in whole muscle and single cells. Muscle and Nerve, 28, 601–608.PubMedCrossRefGoogle Scholar
  58. Fujita, S., Rasmussen, B. B., Cadenas, J. G., Grady, J. J., Volpi, E. (2006). Effect of insulin on human skeletal muscle protein synthesis is modulated by insulin-induced changes in muscle blood flow and amino acid availability. American Journal of Physiology. Endocrinology and Metabolism, 291, E745–E754.PubMedCrossRefGoogle Scholar
  59. Fujita, S., Rasmussen, B. B., Cadenas, J. G., Drummond, M. J., Glynn, E. L., Sattler, F. R., Volpi, E. (2007). Aerobic exercise overcomes the age-related insulin resistance of muscle protein metabolism by improving endothelial function and Akt/mammalian target of rapamycin signaling. Diabetes, 56, 1615–1622.PubMedCrossRefGoogle Scholar
  60. Fujita, S., Dreyer, H.C., Drummond, M.J., Glynn, E.L., Volpi, E., Rasmussen, B.B. (2008). Essential amino acid and carbohydrate ingestion prior to resistance exercise does not enhance post-exercise muscle protein synthesis. Journal of Applied Physiology, 106(5), 1730–1739.Google Scholar
  61. Gautsch, T. A., Anthony, J. C., Kimball, S. R., Paul, G. L., Layman, D. K., Jefferson, L. S. (1998). Availability of eIF4E regulates skeletal muscle protein synthesis during recovery from exercise. The American Journal of Physiology, 274, C406–C414.PubMedGoogle Scholar
  62. Gelfand, R. A. & Barrett, E. J. (1987). Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. Journal of Clinical Investigation, 80, 1–6.PubMedCrossRefGoogle Scholar
  63. Godard, M. P., Williamson, D. L., Trappe, S. W. (2002). Oral amino-acid provision does not affect muscle strength or size gains in older men. Medicine and Science in Sports and Exercise, 34, 1126–1131.PubMedCrossRefGoogle Scholar
  64. Greenhaff, P. L., Karagounis, L. G., Peirce, N., Simpson, E. J., Hazell, M., Layfield, R., Wackerhage, H., Smith, K., Atherton, P., Selby, A., Rennie, M. J. (2008). Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. American Journal of Physiology. Endocrinology and Metabolism, 295, E595–E604.PubMedCrossRefGoogle Scholar
  65. Guillet, C., Prod’Homme, M., Balage, M., Gachon, P., Giraudet, C., Morin, L., Grizard, J., Boirie, Y. (2004a). Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans. The FASEB Journal, 18, 1586–1587.PubMedGoogle Scholar
  66. Guillet, C., Zangarelli, A., Gachon, P., Morio, B., Giraudet, C., Rousset, P., Boirie, Y. (2004b). Whole body protein breakdown is less inhibited by insulin, but still responsive to amino acid, in nondiabetic elderly subjects. The Journal of Clinical Endocrinology and Metabolism, 89, 6017–6024.PubMedCrossRefGoogle Scholar
  67. Hameed, M., Orrell, R. W., Cobbold, M., Goldspink, G., Harridge, S. D. (2003). Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise. Journal de Physiologie, 547, 247–254.CrossRefGoogle Scholar
  68. Hasten, D. L., Pak-Loduca, J., Obert, K. A., Yarasheski, K. E. (2000). Resistance exercise acutely increases MHC and mixed muscle protein synthesis rates in 78–84 and 23–32 yr olds. American Journal of Physiology. Endocrinology and Metabolism, 278, E620–E626.PubMedGoogle Scholar
  69. Haub, M. D., Wells, A. M., Tarnopolsky, M. A., Campbell, W. W. (2002). Effect of protein source on resistive-training-induced changes in body composition and muscle size in older men. The American Journal of Clinical Nutrition, 76, 511–517.PubMedGoogle Scholar
  70. Hawke, T. J. & Garry, D. J. (2001). Myogenic satellite cells: physiology to molecular biology. Journal of Applied Physiology, 91, 534–551.PubMedGoogle Scholar
  71. Henderson, G. C., Irving, B. A., Nair, K. S. (2009). Potential application of essential amino Acid supplementation to treat sarcopenia in elderly people. The Journal of Clinical Endocrinology and Metabolism, 94, 1524–1526.PubMedCrossRefGoogle Scholar
  72. Hikida, S., Takeuchi, M., Hata, H., Yamana, H., Fujita, H., Shirouzu, K., Matsuno, K., Tanaka, T., Kawaguchi, C., Akiyoshi, K., Tsuru, T., Tanaka, Y., Mizote, H. (1998). Free jejunal graft autotransplantation should be revascularized within 3 hours. Transplantation Proceedings, 30, 3446–3448.PubMedCrossRefGoogle Scholar
  73. Hillier, T. A., Fryburg, D. A., Jahn, L. A., Barrett, E. J. (1998). Extreme hyperinsulinemia unmasks insulin’s effect to stimulate protein synthesis in the human forearm. The American Journal of Physiology, 274, E1067–E1074.PubMedGoogle Scholar
  74. Hulmi, J.J., Kovanen, V., Selanne, H., Kraemer, W.J., Hakkinen, K., MERO, A.A. (2008). Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids, 37, 297–308.Google Scholar
  75. Iglay, H. B., Thyfault, J. P., Apolzan, J. W., Campbell, W. W. (2007). Resistance training and dietary protein: effects on glucose tolerance and contents of skeletal muscle insulin signaling proteins in older persons. The American Journal of Clinical Nutrition, 85, 1005–1013.PubMedGoogle Scholar
  76. Kadi, F. & Thornell, L. E. (2000). Concomitant increases in myonuclear and satellite cell content in female trapezius muscle following strength training. Histochemistry and Cell Biology, 113, 99–103.PubMedCrossRefGoogle Scholar
  77. Kadi, F., Charifi, N., Denis, C., Lexell, J. (2004a). Satellite cells and myonuclei in young and elderly women and men. Muscle and Nerve, 29, 120–127.PubMedCrossRefGoogle Scholar
  78. Kadi, F., Schjerling, P., Andersen, L. L., Charifi, N., Madsen, J. L., Christensen, L. R., Andersen, J. L. (2004b). The effects of heavy resistance training and detraining on satellite cells in human skeletal muscles. Journal de Physiologie, 558, 1005–1012.CrossRefGoogle Scholar
  79. Katsanos, C. S., Kobayashi, H., Sheffield-Moore, M., Aarsland, A., Wolfe, R. R. (2005). Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids. The American Journal of Clinical Nutrition, 82, 1065–1073.PubMedGoogle Scholar
  80. Katsanos, C. S., Kobayashi, H., Sheffield-Moore, M., Aarsland, A., Wolfe, R. R. (2006). A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. American Journal of Physiology. Endocrinology and Metabolism, 291, E381–E387.PubMedCrossRefGoogle Scholar
  81. Kim, J. S., Cross, J. M., Bamman, M. M. (2005a). Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women. American Journal of Physiology. Endocrinology and Metabolism, 288, E1110–E1119.PubMedCrossRefGoogle Scholar
  82. Kim, J. S., Kosek, D. J., Petrella, J. K., Cross, J. M., Bamman, M. M. (2005b). Resting and load-induced levels of myogenic gene transcripts differ between older adults with demonstrable sarcopenia and young men and women. Journal of Applied Physiology, 99, 2149–2158.PubMedCrossRefGoogle Scholar
  83. Kimball, S. R. & Jefferson, L. S. (2004). Regulation of global and specific mRNA translation by oral administration of branched-chain amino acids. Biochemical and Biophysical Research Communications, 313, 423–427.PubMedCrossRefGoogle Scholar
  84. Kimball, S. R., Farrell, P. A., Jefferson, L. S. (2002). Invited review: role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise. Journal of Applied Physiology, 93, 1168–1180.PubMedGoogle Scholar
  85. Koopman, R. & van Loon, L.J. (2009) Aging, exercise and muscle protein metabolism. Journal of Applied Physiology, 106, 2040–2048.Google Scholar
  86. Koopman, R., Pannemans, D. L., Jeukendrup, A. E., Gijsen, A. P., Senden, J. M., Halliday, D., Saris, W. H., van Loon, L. J., Wagenmakers, A. J. (2004). Combined ingestion of protein and carbohydrate improves protein balance during ultra-endurance exercise. American Journal of Physiology. Endocrinology and Metabolism, 287, E712–E720.PubMedCrossRefGoogle Scholar
  87. Koopman, R., Wagenmakers, A. J., Manders, R. J., Zorenc, A. H., Senden, J. M., Gorselink, M., Keizer, H. A., van Loon, L. J. (2005). Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects. American Journal of Physiology. Endocrinology and Metabolism, 288, E645–E653.PubMedCrossRefGoogle Scholar
  88. Koopman, R., Verdijk, L., Manders, R. J., Gijsen, A. P., Gorselink, M., Pijpers, E., Wagenmakers, A. J., van Loon, L. J. (2006). Co-ingestion of protein and leucine stimulates muscle protein synthesis rates to the same extent in young and elderly lean men. The American Journal of Clinical Nutrition, 84, 623–632.PubMedGoogle Scholar
  89. Koopman, R., Beelen, M., Stellingwerff, T., Pennings, B., Saris, W. H., Kies, A. K., Kuipers, H., van Loon, L. J. (2007a). Co-ingestion of carbohydrate with protein does not further augment post-exercise muscle protein synthesis. American Journal of Physiology. Endocrinology and Metabolism, 293, E833–E842.PubMedCrossRefGoogle Scholar
  90. Koopman, R., Pennings, B., Zorenc, A. H., van Loon, L. J. (2007b). Protein ingestion further augments S6K1 phosphorylation in skeletal muscle following resistance type exercise in males. The Journal of Nutrition, 137, 1836–1842.Google Scholar
  91. Koopman, R., Verdijk, L. B., Beelen, M., Gorselink, M., Kruseman, A. N., Wagenmakers, A. J., Kuipers, H., van Loon, L. J. (2008). Co-ingestion of leucine with protein does not further augment post-exercise muscle protein synthesis rates in elderly men. The British Journal of Nutrition, 99, 571–580.PubMedCrossRefGoogle Scholar
  92. Koopman, R., Crombach, N., Gijsen, A. P., Walrand, S., Fauquant, J., Kies, A. K., Lemosquet, S., Saris, W. H., Boirie, Y., van Loon, L. J. (2009a). Ingestion of a protein hydrolysate is accompanied by an accelerated in vivo digestion and absorption rate when compared with its intact protein. The American Journal of Clinical Nutrition, 90, 106–115.PubMedCrossRefGoogle Scholar
  93. Koopman, R., Walrand, S., Beelen, M., Gijsen, A.P., Kies, A.K., Boirie, Y., Saris, W.H., van Loon, L.J. (2009b) Dietary protein digestion and absorption rate and the subsequent muscle protein synthetic response are not different between young and elderly men. Journal of Nutrition, 139(9), 1707–1713.Google Scholar
  94. Kosek, D. J., Kim, J. S., Petrella, J. K., Cross, J. M., Bamman, M. M. (2006). Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults. Journal of Applied Physiology, 101, 531–544.PubMedCrossRefGoogle Scholar
  95. Kumar, V., Selby, A., Rankin, D., Patel, R., Atherton, P., Hildebrandt, W., Williams, J., Smith, K., Seynnes, O., Hiscock, N., Rennie, M. J. (2009). Age-related differences in dose response of muscle protein synthesis to resistance exercise in young and old men. Journal de Physiologie, 587, 211–217.CrossRefGoogle Scholar
  96. Landers, K. A., Hunter, G. R., Wetzstein, C. J., Bamman, M. M., Weinsier, R. L. (2001). The interrelationship among muscle mass, strength, and the ability to perform physical tasks of daily living in younger and older women. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 56, B443–B448.Google Scholar
  97. Larsson, L. (1978). Morphological and functional characteristics of the ageing skeletal muscle in man. A cross-sectional study. Acta Physiologica Scandinavica. Supplementum, 457, 1–36.PubMedCrossRefGoogle Scholar
  98. Larsson, L. & Karlsson, J. (1978). Isometric and dynamic endurance as a function of age and skeletal muscle characteristics. Acta Physiologica Scandinavica, 104, 129–136.PubMedCrossRefGoogle Scholar
  99. Larsson, L., Sjodin, B., Karlsson, J. (1978). Histochemical and biochemical changes in human skeletal muscle with age in sedentary males, age 22–65 years. Acta Physiologica Scandinavica, 103, 31–39.PubMedCrossRefGoogle Scholar
  100. Lexell, J. (1995). Human aging, muscle mass, and fiber type composition. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 50(Spec No), 11–16.Google Scholar
  101. Lexell, J., Taylor, C. C., Sjostrom, M. (1988). What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. Journal of the Neurological Sciences, 84, 275–294.PubMedCrossRefGoogle Scholar
  102. Lexell, J., Downham, D. Y., Larsson, Y., Bruhn, E., Morsing, B. (1995). Heavy-resistance training in older Scandinavian men and women: short- and long-term effects on arm and leg muscles. Scandinavian Journal of Medicine & Science in Sports, 5, 329–341.Google Scholar
  103. Lindle, R. S., Metter, E. J., Lynch, N. A., Fleg, J. L., Fozard, J. L., Tobin, J., Roy, T. A., Hurley, B. F. (1997). Age and gender comparisons of muscle strength in 654 women and men aged 20-93 yr. Journal of Applied Physiology, 83, 1581–1587.PubMedGoogle Scholar
  104. Mackey, A. L., Esmarck, B., Kadi, F., Koskinen, S. O., Kongsgaard, M., Sylvestersen, A., Hansen, J. J., Larsen, G., Kjaer, M. (2007). Enhanced satellite cell proliferation with resistance training in elderly men and women. Scandinavian Journal of Medicine and Science in Sports, 17, 34–42.PubMedCrossRefGoogle Scholar
  105. Martel, G. F., Roth, S. M., Ivey, F. M., Lemmer, J. T., Tracy, B. L., Hurlbut, D. E., Metter, E. J., Hurley, B. F., Rogers, M. A. (2006). Age and sex affect human muscle fibre adaptations to heavy-resistance strength training. Experimental Physiology, 91, 457–464.PubMedCrossRefGoogle Scholar
  106. Mauro, A. (1961). Satellite cell of skeletal muscle fibers. The Journal of Biophysical and Biochemical Cytology, 9, 493–495.PubMedCrossRefGoogle Scholar
  107. Mckay, B. R., O’Reilly, C. E., Phillips, S. M., Tarnopolsky, M. A., Parise, G. (2008). Co-expression of IGF-1 family members with myogenic regulatory factors following acute damaging muscle-lengthening contractions in humans. Journal de Physiologie, 586, 5549–5560.CrossRefGoogle Scholar
  108. Melton, L. J., 3RD Khosla, S., Crowson, C. S., O’Connor, M. K., O’Fallon, W. M., Riggs, B. L. (2000). Epidemiology of sarcopenia. Journal of the American Geriatrics Society, 48, 625–630.PubMedGoogle Scholar
  109. Meredith, C. N., Frontera, W. R., O’Reilly, K. P., Evans, W. J. (1992). Body composition in elderly men: effect of dietary modification during strength training. Journal of the American Geriatrics Society, 40, 155–162.PubMedGoogle Scholar
  110. Miller, S. L., Tipton, K. D., Chinkes, D. L., Wolf, S. E., Wolfe, R. R. (2003). Independent and combined effects of amino acids and glucose after resistance exercise. Medicine and Science in Sports and Exercise, 35, 449–455.PubMedCrossRefGoogle Scholar
  111. Morais, J. A., Chevalier, S., Gougeon, R. (2006). Protein turnover and requirements in the healthy and frail elderly. The Journal of Nutrition, Health and Aging, 10, 272–283.Google Scholar
  112. Moss, F. P. & Leblond, C. P. (1970). Nature of dividing nuclei in skeletal muscle of growing rats. The Journal of Cell Biology, 44, 459–462.PubMedCrossRefGoogle Scholar
  113. Moss, F. P. & Leblond, C. P. (1971). Satellite cells as the source of nuclei in muscles of growing rats. The Anatomical Record, 170, 421–435.PubMedCrossRefGoogle Scholar
  114. Musaro, A., Cusella de Angelis, M. G., Germani, A., Ciccarelli, C., Molinaro, M., Zani, B. M. (1995). Enhanced expression of myogenic regulatory genes in aging skeletal muscle. Experimental Cell Research, 221, 241–248.PubMedCrossRefGoogle Scholar
  115. Nair, K. S. (1995). Muscle protein turnover: methodological issues and the effect of aging. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 50(Spec No), 107–112.Google Scholar
  116. Nair, K. S. (2005). Aging muscle. The American Journal of Clinical Nutrition, 81, 953–963.PubMedGoogle Scholar
  117. Nofziger, D., Miyamoto, A., Lyons, K. M., Weinmaster, G. (1999). Notch signaling imposes two distinct blocks in the differentiation of C2C12 myoblasts. Development, 126, 1689–1702.PubMedGoogle Scholar
  118. Norton, L. E. & Layman, D. K. (2006). Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. The Journal of Nutrition, 136, 533S–537S.PubMedGoogle Scholar
  119. Olsen, S., Aagaard, P., Kadi, F., Tufekovic, G., Verney, J., Olesen, J. L., Suetta, C., Kjaer, M.(2006). Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. Journal de Physiologie, 573, 525–534.CrossRefGoogle Scholar
  120. Paddon-Jones, D., Sheffield-Moore, M., Zhang, X. J., Volpi, E., Wolf, S. E., Aarsland, A., Ferrando, A. A., Wolfe, R. R. (2004). Amino acid ingestion improves muscle protein synthesis in the young and elderly. American Journal of Physiology. Endocrinology and Metabolism, 286, E321–E328.PubMedCrossRefGoogle Scholar
  121. Paddon-Jones, D., Sheffield-Moore, M., Katsanos, C. S., Zhang, X. J., Wolfe, R. R. (2006). Differential stimulation of muscle protein synthesis in elderly humans following isocaloric ingestion of amino acids or whey protein. Experimental Gerontology, 41, 215–219.PubMedCrossRefGoogle Scholar
  122. Petrella, J. K., Kim, J. S., Tuggle, S. C., Hall, S. R., Bamman, M. M. (2005). Age differences in knee extension power, contractile velocity, and fatigability. Journal of Applied Physiology, 98, 211–220.PubMedCrossRefGoogle Scholar
  123. Petrella, J. K., Kim, J. S., Cross, J. M., Kosek, D. J., Bamman, M. M. (2006). Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women. American Journal of Physiology. Endocrinology and Metabolism, 291, E937–E946.PubMedCrossRefGoogle Scholar
  124. Phillips, S. M., Tipton, K. D., Aarsland, A., Wolf, S. E., Wolfe, R. R. (1997). Mixed muscle protein synthesis and breakdown after resistance exercise in humans. The American Journal of Physiology, 273, E99–E107.PubMedGoogle Scholar
  125. Psilander, N., Damsgaard, R., Pilegaard, H. (2003). Resistance exercise alters MRF and IGF-I mRNA content in human skeletal muscle. Journal of Applied Physiology, 95, 1038–1044.PubMedGoogle Scholar
  126. Rand, W. M., Pellett, P. L., Young, V. R. (2003). Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. The American Journal of Clinical Nutrition, 77, 109–127.PubMedGoogle Scholar
  127. Rasmussen, B. B., Tipton, K. D., Miller, S. L., Wolf, S. E., Wolfe, R. R. (2000). An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. Journal of Applied Physiology, 88, 386–392.PubMedGoogle Scholar
  128. Rasmussen, B. B., Fujita, S., Wolfe, R. R., Mittendorfer, B., Roy, M., Rowe, V. L., Volpi, E. (2006). Insulin resistance of muscle protein metabolism in aging. The FASEB Journal, 20, 768–769.PubMedGoogle Scholar
  129. Raue, U., Slivka, D., Jemiolo, B., Hollon, C., Trappe, S. (2006). Myogenic gene expression at rest and after a bout of resistance exercise in young (18–30 yr) and old (80–89 yr) women. Journal of Applied Physiology, 101, 53–59.PubMedCrossRefGoogle Scholar
  130. Raue, U., Slivka, D., Jemiolo, B., Hollon, C., Trappe, S. (2007). Proteolytic gene expression differs at rest and after resistance exercise between young and old women. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 62, 1407–1412.Google Scholar
  131. Renault, V., Thornell, L. E., Eriksson, P. O., Butler-Browne, G., Mouly, V. (2002). Regenerative potential of human skeletal muscle during aging. Aging Cell, 1, 132–139.PubMedCrossRefGoogle Scholar
  132. Rennie, M. J. (2009). Anabolic resistance: the effects of aging, sexual dimorphism, and immobilization on human muscle protein turnover. Applied Physiology, Nutrition, and Metabolism, 34, 377–381.PubMedCrossRefGoogle Scholar
  133. Rennie, M. J., Edwards, R. H., Halliday, D., Matthews, D. E., Wolman, S. L., Millward, D. J. (1982). Muscle protein synthesis measured by stable isotope techniques in man: the effects of feeding and fasting. Clinical Science (London), 63, 519–523.Google Scholar
  134. Rieu, I., Balage, M., Sornet, C., Giraudet, C., Pujos, E., Grizard, J., Mosoni, L., Dardevet, D. (2006). Leucine supplementation improves muscle protein synthesis in elderly men independently of hyperaminoacidaemia. Journal de Physiologie, 575, 305–315.CrossRefGoogle Scholar
  135. Rommel, C., Bodine, S. C., Clarke, B. A., Rossman, R., Nunez, L., Stitt, T. N., Yancopoulos, G. D., Glass, D. J. (2001). Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nature Cell Biology, 3, 1009–1013.PubMedCrossRefGoogle Scholar
  136. Rooyackers, O. E., Adey, D. B., Ades, P. A., Nair, K. S. (1996). Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 93, 15364–15369.PubMedCrossRefGoogle Scholar
  137. Roth, S. M., Martel, G. F., Ivey, F. M., Lemmer, J. T., Metter, E. J., Hurley, B. F., Rogers, M. A. (2000). Skeletal muscle satellite cell populations in healthy young and older men and women. The Anatomical Record, 260, 351–358.PubMedCrossRefGoogle Scholar
  138. Roth, S. M., Martel, G. F., Ivey, F. M., Lemmer, J. T., Tracy, B. L., Metter, E. J., Hurley, B. F., Rogers, M. A. (2001). Skeletal muscle satellite cell characteristics in young and older men and women after heavy resistance strength training. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 56, B240–B247.Google Scholar
  139. Roth, S. M., Martel, G. F., Ferrell, R. E., Metter, E. J., Hurley, B. F., Rogers, M. A. (2003). Myostatin gene expression is reduced in humans with heavy-resistance strength training: a brief communication. Experimental Biology Medicine (Maywood), 228, 706–709.Google Scholar
  140. Roy, B. D., Tarnopolsky, M. A., Macdougall, J. D., Fowles, J., Yarasheski, K. E. (1997). Effect of glucose supplement timing on protein metabolism after resistance training. Journal of Applied Physiology, 82, 1882–1888.PubMedCrossRefGoogle Scholar
  141. Sajko, S., Kubinova, L., Cvetko, E., Kreft, M., Wernig, A., Erzen, I. (2004). Frequency of M-cadherin-stained satellite cells declines in human muscles during aging. The Journal of Histochemistry and Cytochemistry, 52, 179–185.PubMedGoogle Scholar
  142. Schubert, C. (2004). Notch, the new muscle booster. Natural Medicines, 10, 24.CrossRefGoogle Scholar
  143. Shefer, G., van de Mark, D. P., Richardson, J. B., Yablonka-Reuveni, Z. (2006). Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Developmental Biology, 294, 50–66.PubMedCrossRefGoogle Scholar
  144. Sheffield-Moore, M., Yeckel, C. W., Volpi, E., Wolf, S. E., Morio, B., Chinkes, D. L., Paddon-Jones, D., Wolfe, R. R. (2004). Postexercise protein metabolism in older and younger men following moderate-intensity aerobic exercise. American Journal of Physiology. Endocrinology and Metabolism, 287, E513–E522.PubMedCrossRefGoogle Scholar
  145. Short, K. R. & Nair, K. S. (2000). The effect of age on protein metabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 3, 39–44.PubMedCrossRefGoogle Scholar
  146. Short, K. R., Vittone, J. L., Bigelow, M. L., Proctor, D. N., Rizza, R. A., Coenen-Schimke, J. M., Nair, K. S. (2003). Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes, 52, 1888–1896.PubMedCrossRefGoogle Scholar
  147. Short, K. R., Vittone, J. L., Bigelow, M. L., Proctor, D. N., Nair, K. S. (2004). Age and aerobic exercise training effects on whole body and muscle protein metabolism. American Journal of Physiology. Endocrinology and Metabolism, 286, E92–E101.PubMedCrossRefGoogle Scholar
  148. Smith, K., Barua, J. M., Watt, P. W., Scrimgeour, C. M., Rennie, M. J. (1992). Flooding with L-[1-13C]leucine stimulates human muscle protein incorporation of continuously infused L-[1-13C]valine. The American Journal of Physiology, 262, E372–E376.PubMedGoogle Scholar
  149. Snijders, T., Verdijk, L. B., van Loon, L. J. (2009). The impact of sarcopenia and exercise training on skeletal muscle satellite cells. Ageing Research Reviews, 8(4), 328–338.PubMedCrossRefGoogle Scholar
  150. Tang, J. E., Perco, J. G., Moore, D. R., Wilkinson, S. B., Phillips, S. M. (2008). Resistance training alters the response of fed state mixed muscle protein synthesis in young men. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 294, R172–R178.PubMedGoogle Scholar
  151. Thornell, L. E., Lindstrom, M., Renault, V., Mouly, V., Butler-Browne, G. S. (2003). Satellite cells and training in the elderly. Scandinavian Journal of Medicine and Science in Sports, 13, 48–55.PubMedCrossRefGoogle Scholar
  152. Timmerman, K. L. & Volpi, E. (2008). Amino acid metabolism and regulatory effects in aging. Current Opinion in Clinical Nutrition and Metabolic Care, 11, 45–49.PubMedCrossRefGoogle Scholar
  153. Tipton, K. D., Ferrando, A. A., Phillips, S. M., Doyle, D., Jr., Wolfe, R. R. (1999a). Postexercise net protein synthesis in human muscle from orally administered amino acids. The American Journal of Physiology, 276, E628–E634.PubMedGoogle Scholar
  154. Tipton, K. D., Gurkin, B. E., Matin, S., Wolfe, R. R. (1999b). Nonessential amino acids are not necessary to stimulate net muscle protein synthesis in healthy volunteers. The Journal of Nutritional Biochemistry, 10, 89–95.PubMedCrossRefGoogle Scholar
  155. Tipton, K. D., Rasmussen, B. B., Miller, S. L., Wolf, S. E., Owens-Stovall, S. K., Petrini, B. E., Wolfe, R. R. (2001). Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. American Journal of Physiology. Endocrinology and Metabolism, 281, E197–E206.PubMedGoogle Scholar
  156. Trumbo, P., Schlicker, S., Yates, A. A., Poos, M. (2002). Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. Journal of the American Dietetic Association, 102, 1621–1630.PubMedCrossRefGoogle Scholar
  157. Verdijk, L. B., Koopman, R., Schaart, G., Meijer, K., Savelberg, H. H., van Loon, L. J. (2007). Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. American Journal of Physiology. Endocrinology and Metabolism, 292, E151–E157.PubMedCrossRefGoogle Scholar
  158. Verdijk, L. B., Gleeson, B. G., Jonkers, R. A. M., Meijer, K., Savelberg, H. H. C. M., Dendale, P., van Loon, L. J. C. (2009a). Skeletal muscle hypertrophy following resistance training is accompanied by a fiber type-specific increase in satellite cell content in elderly men. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 64, 332–339.CrossRefGoogle Scholar
  159. Verdijk, L. B., Jonkers, R. A. M., Gleeson, B. G., Beelen, M., Meijer, K., Savelberg, H. H. C. M., Wodzig, K. W. H., Dendale, P., van Loon, L. J. C. (2009b). Protein supplementation before and after exercise does not further augment skeletal muscle hypertrophy following resistance training in elderly men. The American Journal of Clinical Nutrition, 89, 608–616.PubMedCrossRefGoogle Scholar
  160. Verney, J., Kadi, F., Charifi, N., Feasson, L., Saafi, M. A., Castells, J., Piehl-Aulin, K., Denis, C. (2008). Effects of combined lower body endurance and upper body resistance training on the satellite cell pool in elderly subjects. Muscle and Nerve, 38, 1147–1154.PubMedCrossRefGoogle Scholar
  161. Vincent, K. R., Braith, R. W., Feldman, R. A., Magyari, P. M., Cutler, R. B., Persin, S. A., Lennon, S. L., Gabr, A. H., Lowenthal, D. T. (2002). Resistance exercise and physical performance in adults aged 60 to 83. Journal of the American Geriatrics Society, 50, 1100–1107.PubMedCrossRefGoogle Scholar
  162. Volpi, E., Ferrando, A. A., Yeckel, C. W., Tipton, K. D., Wolfe, R. R. (1998). Exogenous amino acids stimulate net muscle protein synthesis in the elderly. Journal of Clinical Investigation, 101, 2000–2007.PubMedCrossRefGoogle Scholar
  163. Volpi, E., Mittendorfer, B., Wolf, S. E., Wolfe, R. R. (1999). Oral amino acids stimulate muscle protein anabolism in the elderly despite higher first-pass splanchnic extraction. The American Journal of Physiology, 277, E513–E520.PubMedGoogle Scholar
  164. Volpi, E., Mittendorfer, B., Rasmussen, B. B., Wolfe, R. R. (2000). The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly. The Journal of Clinical Endocrinology and Metabolism, 85, 4481–4490.PubMedCrossRefGoogle Scholar
  165. Volpi, E., Sheffield-Moore, M., Rasmussen, B. B., Wolfe, R. R. (2001). Basal muscle amino acid kinetics and protein synthesis in healthy young and older men. Jama, 286, 1206–1212.PubMedCrossRefGoogle Scholar
  166. Volpi, E., Kobayashi, H., Sheffield-Moore, M., Mittendorfer, B., Wolfe, R. R. (2003). Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. The American Journal of Clinical Nutrition, 78, 250–258.PubMedGoogle Scholar
  167. Walker, K. S., Kambadur, R., Sharma, M., Smith, H. K. (2004). Resistance training alters plasma myostatin but not IGF-1 in healthy men. Medicine and Science in Sports and Exercise, 36, 787–793.PubMedGoogle Scholar
  168. Walrand, S., Short, K. R., Bigelow, M. L., Sweatt, A. J., Hutson, S. M., Nair, K. S. (2008). Functional impact of high protein intake on healthy elderly people. American Journal of Physiology. Endocrinology and Metabolism, 295, E921–E928.PubMedCrossRefGoogle Scholar
  169. Welle, S. & Thornton, C. A. (1998). High-protein meals do not enhance myofibrillar synthesis after resistance exercise in 62- to 75-yr-old men and women. The American Journal of Physiology, 274, E677–E683.PubMedGoogle Scholar
  170. Welle, S., Thornton, C., Jozefowicz, R., Statt, M. (1993). Myofibrillar protein synthesis in young and old men. The American Journal of Physiology, 264, E693–E698.PubMedGoogle Scholar
  171. Welle, S., Thornton, C., Statt, M. (1995). Myofibrillar protein synthesis in young and old human subjects after three months of resistance training. The American Journal of Physiology, 268, E422–E427.PubMedGoogle Scholar
  172. WHO (2008) Ageing (online) http://www.who.int/topics/ageing/enGoogle Scholar
  173. Wilkes, E., Selby, A., Patel, R., Rankin, D., Smith, K., Rennie, M. J. (2008). Blunting of insulin-mediated proteolysis in leg muscle of elderly subjects may contribute to age-related sarcopenia (Abstract). Proceedings of the Nutrition Society, 67, E153.CrossRefGoogle Scholar
  174. Wilkinson, S. B., Tarnopolsky, M. A., Macdonald, M. J., Macdonald, J. R., Armstrong, D., Phillips, S. M. (2007). Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. The American Journal of Clinical Nutrition, 85, 1031–1040.PubMedGoogle Scholar
  175. Wilkinson, S. B., Phillips, S. M., Atherton, P. J., Patel, R., Yarasheski, K. E., Tarnopolsky, M. A., Rennie, M. J. (2008). Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. Journal de Physiologie, 586, 3701–3717.CrossRefGoogle Scholar
  176. Willoughby, D. S. & Nelson, M. J. (2002). Myosin heavy-chain mRNA expression after a single session of heavy-resistance exercise. Medicine and Science in Sports and Exercise, 34, 1262–1269.PubMedCrossRefGoogle Scholar
  177. Wolfson, L., Judge, J., Whipple, R., King, M. (1995). Strength is a major factor in balance, gait, and the occurrence of falls. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 50(Spec No), 64–67.Google Scholar
  178. Yang, Y., Creer, A., Jemiolo, B., Trappe, S. (2005). Time course of myogenic and metabolic gene expression in response to acute exercise in human skeletal muscle. Journal of Applied Physiology, 98, 1745–1752.PubMedCrossRefGoogle Scholar
  179. Yarasheski, K. E., Zachwieja, J. J., Bier, D. M. (1993). Acute effects of resistance exercise on muscle protein synthesis rate in young and elderly men and women. The American Journal of Physiology, 265, E210–E214.PubMedGoogle Scholar
  180. Yarasheski, K. E., Welle, S., Nair, K. S. (2002). Muscle protein synthesis in younger and older men. Jama, 287, 317–318.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • René Koopman
    • 2
  • Lex B. Verdijk
    • 3
  • Luc J. C. van Loon
    • 1
    Email author
  1. 1.Department of Human Movement SciencesMaastricht University Medical CentreMaastrichtThe Netherlands
  2. 2.Basic and Clinical Myology Laboratory, Department of PhysiologyThe University of MelbourneParkvilleAustralia
  3. 3.Department of Human Movement Sciences, Nutrition and Toxicology Research Institute Maastricht (NUTRIM)Maastricht University Medical CentreMaastrichtThe Netherlands

Personalised recommendations