Taxanes and Epothilones in Cancer Treatment

Chapter
Part of the Cancer Growth and Progression book series (CAGP, volume 13)

Abstract

The discovery of compounds that bind and inhibit the function of microtubules dates back many centuries. The first compound to be used medicinally in humans, ultimately identified to have anti-microtubule properties, was colchicine. Colchicine, extracted from the plant Colchicum autumnale, was first administered to humans with gout in the sixth century A.D. [1]. After it was identified that colchicine blocked cells in metaphase, the compound became an important tool in the study of the cell cycle and mitosis [2].

Keywords

Overall Survival Metastatic Breast Cancer Overall Response Rate Weekly Schedule Gynecology Oncology Group Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hastie SB (1991) Interactions of colchicine with tubulin. Pharmacol Ther 51(3):377–401PubMedGoogle Scholar
  2. 2.
    Malkinson F (1981) Colchicine new uses for an old, old drug. Arch Dermatol 118:453–457Google Scholar
  3. 3.
    Dumontet C, Sikic BI (1999) Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. J Clin Oncol 17(3):1061–1070PubMedGoogle Scholar
  4. 4.
    Dustin P (1984) Microtubules, 2nd edn. Springer, New YorkGoogle Scholar
  5. 5.
    Hyams JL, Lloyd CW (1993) Microtubules. Wiley-Liss, New YorkGoogle Scholar
  6. 6.
    Baker TS, Amos LA (1978) Structure of the tubulin dimer in zinc-induced sheets. J Mol Biol 123(1):89–106PubMedGoogle Scholar
  7. 7.
    Lewis SG, Gilmartin ME, Hall JL, Cowan NJ (1985) Three expressed sequences within the human btea-tubulin multigene family each define a distinct isotyope. J Mol Biol 182(1):11–20PubMedGoogle Scholar
  8. 8.
    Dobner PR et al (1987) Alternative 5ʹ exons either provide or deny an initiator methionine codon to the same alpha-tubulin coding region. Nucleic Acids Res 15(1):199–218PubMedGoogle Scholar
  9. 9.
    Amos LA, Baker TS (1979) The three-dimensional structure of tubulin protofilaments. Nature 279(5714):607–612PubMedGoogle Scholar
  10. 10.
    Schulze E et al (1987) Posttranslational modification and microtubule stability. J Cell Biol 105(5):2167–2177PubMedGoogle Scholar
  11. 11.
    Vallee RB, Bloom GS, Theurkauf WE (1984) Microtubule-associated proteins: subunits of the cytomatrix. J Cell Biol 99(1 Pt 2):38s–44sPubMedGoogle Scholar
  12. 12.
    Desai A, Mitchison TJ (1997) Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13:83–117PubMedGoogle Scholar
  13. 13.
    Wilson L, Panda D, Jordan MA (1999) Modulation of microtubule dynamics by drugs: a paradigm for the actions of cellular regulators. Cell Struct Funct 24(5):329–335PubMedGoogle Scholar
  14. 14.
    Rowinsky, ED, Donehower RC (1996) Antimicrotubule agents In: BA Chabner, Longo DL (eds) Cancer chemotherapy and biotherapy; principles and practice, 2nd edn. Lippincott-Raven, Philadelphia, New YorkGoogle Scholar
  15. 15.
    Wani MC et al (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93(9):2325–2327PubMedGoogle Scholar
  16. 16.
    Wall ME and Wani MC (1995) Camptothecin and taxol: discovery to clinic – thirteenth Bruce F. Cain memorial award lecture. Cancer Res 55(4):753–760PubMedGoogle Scholar
  17. 17.
    Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277(5698):665–667PubMedGoogle Scholar
  18. 18.
    Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 77(3):1561–1565PubMedGoogle Scholar
  19. 19.
    Cortes JE, Pazdur R (1995) Docetaxel. J Clin Oncol 13(10):2643–2655PubMedGoogle Scholar
  20. 20.
    Gligorov J, Lotz JP (2004) Preclinical pharmacology of the taxanes: implications of the differences. Oncologist 9(Suppl 2):3–8PubMedGoogle Scholar
  21. 21.
    Rowinsky EK, Donehower RC (1995) Paclitaxel (taxol). N Engl J Med 332(15):1004–1014PubMedGoogle Scholar
  22. 22.
    Nogales E et al (1999) High-resolution model of the microtubule. Cell 96(1):79–88PubMedGoogle Scholar
  23. 23.
    De Brabander M et al (1981) Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc Natl Acad Sci USA 78(9):5608–5612PubMedGoogle Scholar
  24. 24.
    Peyrot V, Briand C (1992) c. Biophysical characterization of the assembly of purified tubulin induced by Taxol and Taxotere (RP 56976) in Second Interface of Clinical and Laboratory Responses to Anticancer Drugs: Drugs and Microtubules. Marseille, FranceGoogle Scholar
  25. 25.
    Derry WB, Wilson L, Jordan MA (1995) Substoichiometric binding of taxol suppresses microtubule dynamics. Biochemistry 34(7):2203–2211PubMedGoogle Scholar
  26. 26.
    Wilson L (1975) Microtubules as drug receptors: pharmacological properties of microtubule protein. Annu NY Acad Sci 253:213Google Scholar
  27. 27.
    Rowinsky EK et al (1988) Microtubule changes and cytotoxicity in leukemic cell lines treated with taxol. Cancer Res 48(14):4093–4100PubMedGoogle Scholar
  28. 28.
    Roberts RL et al (1982) Effects of taxol on human neutrophils. J Immunol 129(5):2134–2141PubMedGoogle Scholar
  29. 29.
    Ding AH et al (1990) Shared actions of endotoxin and taxol on TNF receptors and TNF release. Science 248(4953):370–372PubMedGoogle Scholar
  30. 30.
    Haldar S, Jena N, Croce CM (1995) Inactivation of Bcl-2 by phosphorylation. Proc Natl Acad Sci USA 92(10):4507–4511PubMedGoogle Scholar
  31. 31.
    Belotti D et al (1996) The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin Cancer Res 2(11):1843–1849PubMedGoogle Scholar
  32. 32.
    Hennequin C, Giocanti N, Favaudon V (1995) S-phase specificity of cell killing by docetaxel (Taxotere) in synchronised HeLa cells. Br J Cancer 71(6):1194–1198PubMedGoogle Scholar
  33. 33.
    Riou JP, Petitgenet O, Combeau C et al (1994) Cellular uptake and efflux of docetaxel (Taxotere) and paclitaxel (Taxol) in P388 cell line. Proc AM Assoc Can Res 35:385:Abstract #2292Google Scholar
  34. 34.
    Maguire HC, Ettore VL (1967) Enhancement of dinitrochlorobenzene (DNCB) contact sensitization by cyclophosphamide in the guinea pig. J Invest Dermatol 48:39–43PubMedGoogle Scholar
  35. 35.
    Berd D et al (1982) Augmentation of the human immune response by cyclophosphamide. Cancer Res 42:4862–4866PubMedGoogle Scholar
  36. 36.
    Berd D, Maguire HC, Mastrangelo MJ (1986) Induction of cell-mediated immunity to autologous melanoma cells and regression of metastases after treatment with a melanoma cell vaccine preceeded by cyclophosphamide. Cancer Res 46:2572–2577PubMedGoogle Scholar
  37. 37.
    Machiels JP et al (2001) Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res 61(9):3689–3697PubMedGoogle Scholar
  38. 38.
    Arlen, PM et al (2006) A randomized phase II study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer. Clin Cancer Res 12(4):1260–1269PubMedGoogle Scholar
  39. 39.
    Cabral F et al (1983) Taxol-requiring mutant of Chinese hamster ovary cells with impaired mitotic spindle assembly. J Cell Biol 97(1):30–39PubMedGoogle Scholar
  40. 40.
    Giannakakou P et al (1997) Paclitaxel-resistant human ovarian cancer cells have mutant beta-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem 272(27):17118–17125PubMedGoogle Scholar
  41. 41.
    Ranganathan S et al (1996) Increase of beta(III)- and beta(IVa)-tubulin isotopes in human prostate carcinoma cells as a result of estramustine resistance. Cancer Res 56(11):2584–2589PubMedGoogle Scholar
  42. 42.
    Kartner N, Riordan JR, Ling V (1983) Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Science 221(4617):1285–1288PubMedGoogle Scholar
  43. 43.
    Ling V (1992) Charles F. Kettering Prize. P-glycoprotein and resistance to anticancer drugs. Cancer 69(10):2603–2609PubMedGoogle Scholar
  44. 44.
    Horwitz SBL, Liao LL, Greenberger L (1989) Mode of action of taxol and characterization of a multidrug-resistant cell line resistant to taxol. In: Kessel D (ed) Resistance to antineoplastic drugs. CRC, Boca Raton, FL, pp 109–126Google Scholar
  45. 45.
    Masuda A et al (2003) Association between mitotic spindle checkpoint impairment and susceptibility to the induction of apoptosis by anti-microtubule agents in human lung cancers. Am J Pathol 163(3):1109–1116PubMedGoogle Scholar
  46. 46.
    Rudner AD, Murray AW (1996) The spindle assembly checkpoint. Curr Opin Cell Biol 8(6):773–780PubMedGoogle Scholar
  47. 47.
    Rouzier R et al (2005) Microtubule-associated protein tau: a marker of paclitaxel sensitivity in breast cancer. Proc Natl Acad Sci USA 102(23):8315–8320PubMedGoogle Scholar
  48. 48.
    Wagner P et al (2005) Microtubule Associated Protein (MAP)-Tau: a novel mediator of paclitaxel sensitivity in vitro and in vivo. Cell Cycle 4(9):1149–1152PubMedGoogle Scholar
  49. 49.
    Kar S et al (2003) Repeat motifs of tau bind to the insides of microtubules in the absence of taxol. Embo J 22(1):70–77PubMedGoogle Scholar
  50. 50.
    Ramanathan B et al (2005) Resistance to paclitaxel is proportional to cellular total antioxidant capacity. Cancer Res 65(18):8455–8460PubMedGoogle Scholar
  51. 51.
    Van Poznak C et al (2002) Assessment of molecular markers of clinical sensitivity to single-agent taxane therapy for metastatic breast cancer. J Clin Oncol 20(9):2319–2326PubMedGoogle Scholar
  52. 52.
    Schmidt M et al (2003) p53 expression and resistance against paclitaxel in patients with metastatic breast cancer. J Cancer Res Clin Oncol 129(5):295–302PubMedGoogle Scholar
  53. 53.
    Slamon DJ et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182PubMedGoogle Scholar
  54. 54.
    Slamon DJ et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244(4905):707–712PubMedGoogle Scholar
  55. 55.
    Gandour-Edwards R et al (2002) Does HER2/neu expression provide prognostic information in patients with advanced urothelial carcinoma? Cancer 95(5):1009–1015PubMedGoogle Scholar
  56. 56.
    Yu D et al (1996) Overexpression of c-erbB-2/neu in breast cancer cells confers increased resistance to Taxol via mdr-1-independent mechanisms. Oncogene 13(6):1359–1365PubMedGoogle Scholar
  57. 57.
    Perez-Soler R et al (2000) Response and determinants of sensitivity to paclitaxel in human non-small cell lung cancer tumors heterotransplanted in nude mice. Clin Cancer Res 6(12):4932–4938PubMedGoogle Scholar
  58. 58.
    Witters LM et al (2003) Decreased response to paclitaxel versus docetaxel in HER-2/neu transfected human breast cancer cells. Am J Clin Oncol 26(1):50–54PubMedGoogle Scholar
  59. 59.
    O’Brien ML, Tew KD (1996) Glutathione and related enzymes in multidrug resistance. Eur J Cancer 32A(6):967–978PubMedGoogle Scholar
  60. 60.
    O’Brien ML et al (1999) Glutathione peptidomimetic drug modulator of multidrug resistance-associated protein. J Pharmacol Exp Ther 291(3):1348–1355PubMedGoogle Scholar
  61. 61.
    Arai T et al (2008) Association of GSTP1 expression with resistance to docetaxel and paclitaxel in human breast cancers. Eur J Surg Oncol 34(7):734–738Google Scholar
  62. 62.
    Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14PubMedGoogle Scholar
  63. 63.
    Alexandre J et al (2006) Accumulation of hydrogen peroxide is an early and crucial step for paclitaxel-induced cancer cell death both in vitro and in vivo. Int J Cancer 119(1):41–48PubMedGoogle Scholar
  64. 64.
    Alexandre J et al (2006) Improvement of the therapeutic index of anticancer drugs by the superoxide dismutase mimic mangafodipir. J Natl Cancer Inst 98(4):236–244PubMedGoogle Scholar
  65. 65.
    Alexandre J et al (2007) Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species. Cancer Res 67(8):3512–3517PubMedGoogle Scholar
  66. 66.
    Rowinsky EK et al (1992) Taxol: the first of the taxanes, an important new class of antitumor agents. Semin Oncol 19(6):646–662PubMedGoogle Scholar
  67. 67.
    Eisenhauer EA et al (1994) European-Canadian randomized trial of paclitaxel in relapsed ovarian cancer: high-dose versus low-dose and long versus short infusion. J Clin Oncol 12(12):2654–2666PubMedGoogle Scholar
  68. 68.
    Sparreboom A et al (1996) Nonlinear pharmacokinetics of paclitaxel in mice results from the pharmaceutical vehicle Cremophor EL. Cancer Res 56(9):2112–2115PubMedGoogle Scholar
  69. 69.
    Gianni L et al (1995) Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J Clin Oncol 13(1):180–190PubMedGoogle Scholar
  70. 70.
    Sparreboom A et al (1999) Cremophor EL-mediated alteration of paclitaxel distribution in human blood: clinical pharmacokinetic implications. Cancer Res 59(7):1454–1457PubMedGoogle Scholar
  71. 71.
    Clarke SJ, Rivory LP (1999) Clinical pharmacokinetics of docetaxel. Clin Pharmacokinet 36(2):99–114PubMedGoogle Scholar
  72. 72.
    Desai NP, Louie L, Ron N, Magdassi S, Soon-Shiong P (2000) Proetin-bound nanoparticles for drug delivery of paclitaxel. Trans World Biomater Congr 1:199Google Scholar
  73. 73.
    Ibrahim NK et al (2002) Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin Cancer Res 8(5):1038–1044PubMedGoogle Scholar
  74. 74.
    Vorum H (1999) Reversible ligand binding to human serum albumin. Theoretical and clinical aspects. Dan Med Bull 46(5):379–399PubMedGoogle Scholar
  75. 75.
    John TA et al (2003) Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer. Am J Physiol Lung Cell Mol Physiol 284(1):L187–L196PubMedGoogle Scholar
  76. 76.
    Rempel SA, Ge S, Gutierrez JA (1999) SPARC: a potential diagnostic marker of invasive meningiomas. Clin Cancer Res 5(2):237–241PubMedGoogle Scholar
  77. 77.
    Schnitzer JE, Oh P (1992) Antibodies to SPARC inhibit albumin binding to SPARC, gp60, and microvascular endothelium. Am J Physiol 263(6 Pt 2):H1872–H1879PubMedGoogle Scholar
  78. 78.
    Porter PL et al (1995) Distribution of SPARC in normal and neoplastic human tissue. J Histochem Cytochem 43(8):791–800PubMedGoogle Scholar
  79. 79.
    Thomas R et al (2000) Differential expression of osteonectin/SPARC during human prostate cancer progression. Clin Cancer Res 6(3):1140–1149PubMedGoogle Scholar
  80. 80.
    Brown TJ et al (1999) Activation of SPARC expression in reactive stroma associated with human epithelial ovarian cancer. Gynecol Oncol 75(1):25–33PubMedGoogle Scholar
  81. 81.
    Ledda F et al (1997) The expression of the secreted protein acidic and rich in cysteine (SPARC) is associated with the neoplastic progression of human melanoma. J Invest Dermatol 108(2):210–214PubMedGoogle Scholar
  82. 82.
    Schilling U, Friedrich EA, Sinn H (1992) Design of compounds having enhanced tumor uptale, using serum albumin as a carrier: part II In vivo studies. Int J Rad Appl Instrum B 19:685–695PubMedGoogle Scholar
  83. 83.
    Desai N et al (2006) Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 12(4):1317–1324PubMedGoogle Scholar
  84. 84.
    Cresteil T et al (1994) Taxol metabolism by human liver microsomes: identification of cytochrome P450 isozymes involved in its biotransformation. Cancer Res 54(2):386–392PubMedGoogle Scholar
  85. 85.
    Harris JW et al (1994) Metabolism of taxol by human hepatic microsomes and liver slices: participation of cytochrome P450 3A4 and an unknown P450 enzyme. Cancer Res 54(15):4026–4035PubMedGoogle Scholar
  86. 86.
    Rowinsky EK et al (1989) Phase I and pharmacodynamic study of taxol in refractory acute leukemias. Cancer Res 49(16):4640–4647PubMedGoogle Scholar
  87. 87.
    Gelderblom H et al (2003) Distribution of paclitaxel in plasma and cerebrospinal fluid. Anticancer Drugs 14(5):365–368PubMedGoogle Scholar
  88. 88.
    ten Tije AJ et al (2004) Limited cerebrospinal fluid penetration of docetaxel. Anticancer Drugs 15(7):715–718PubMedGoogle Scholar
  89. 89.
    Forastiere AA et al (2001) Phase III comparison of high-dose paclitaxel + cisplatin + granulocyte colony-stimulating factor versus low-dose paclitaxel + cisplatin in advanced head and neck cancer: eastern cooperative oncology group study E1393. J Clin Oncol 19(4):1088–1095PubMedGoogle Scholar
  90. 90.
    Roth BJ et al (1994) Significant activity of paclitaxel in advanced transitional-cell carcinoma of the urothelium: a phase II trial of the eastern cooperative oncology group. J Clin Oncol 12(11):2264–2270PubMedGoogle Scholar
  91. 91.
    Van Poznak C, Seidman AD (2002) Critical review of current treatment strategies for advanced hormone insensitive breast cancer. Cancer Invest 20(Suppl 2):1–14PubMedGoogle Scholar
  92. 92.
    Eniu A, Palmieri FM, Perez EA (2005) Weekly administration of docetaxel and paclitaxel in metastatic or advanced breast cancer. Oncologist 10(9):665–685PubMedGoogle Scholar
  93. 93.
    Sikov WM, Akerly W, Kahanic S et al (2002) Multicenter, 3-armed randomized study of high-dose weekly paclitaxel, (HWDP) versus standard-dose weekly paclitaxel (SWDP) for metastatic breast cancer, (MBC) Proc ASCO 21:34aGoogle Scholar
  94. 94.
    Akerley W et al (1997) Weekly paclitaxel in patients with advanced lung cancer: preliminary data from a phase II trial. Semin Oncol 24(4 Suppl 12):S12–10–S12–13PubMedGoogle Scholar
  95. 95.
    Perez EA et al (2001) Multicenter phase II trial of weekly paclitaxel in women with metastatic breast cancer. J Clin Oncol 19(22):4216–4223PubMedGoogle Scholar
  96. 96.
    Panday VR et al (1998) Phase I and pharmacologic study of weekly doxorubicin and 1 h infusional paclitaxel in patients with advanced breast cancer. Anticancer Drugs 9(8):665–673PubMedGoogle Scholar
  97. 97.
    Schwonzen M, Kurbacher CM, Mallmann P (2000) Liposomal doxorubicin and weekly paclitaxel in the treatment of metastatic breast cancer. Anticancer Drugs 11(9):681–685PubMedGoogle Scholar
  98. 98.
    Frasci G et al (1998) Weekly paclitaxel-cisplatin administration with G-CSF support in advanced breast cancer. A phase II study. Breast Cancer Res Treat 49(1):13–26PubMedGoogle Scholar
  99. 99.
    Spano JP et al (2004) Phase II study of paclitaxel combined with vinorelbine in patients with advanced breast cancer. Am J Clin Oncol 27(3):317–321PubMedGoogle Scholar
  100. 100.
    Seidman AD et al (2001) Weekly trastuzumab and paclitaxel therapy for metastatic breast cancer with analysis of efficacy by HER2 immunophenotype and gene amplification. J Clin Oncol 19(10):2587–2595PubMedGoogle Scholar
  101. 101.
    Frasci G et al (2006) Weekly cisplatin, epirubicin, and paclitaxel with granulocyte colony-stimulating factor support vs. triweekly epirubicin and paclitaxel in locally advanced breast cancer: final analysis of a sicog phase III study. Br J Cancer 95(8):1005–1012PubMedGoogle Scholar
  102. 102.
    Ford HE et al (2006) A phase II study of weekly docetaxel in patients with anthracycline pretreated metastatic breast cancer. Cancer Chemother Pharmacol 58(6):809–815PubMedGoogle Scholar
  103. 103.
    Burstein HJ et al (2000) Docetaxel administered on a weekly basis for metastatic breast cancer. J Clin Oncol 18(6):1212–1219PubMedGoogle Scholar
  104. 104.
    Ramos M et al (2003) Weekly docetaxel as second-line therapy for patients with advanced breast cancer resistant to previous anthracycline treatment. J Chemother 15(2):192–197PubMedGoogle Scholar
  105. 105.
    Ito Y et al (2001) Dose-finding phase I study of simultaneous weekly infusion with doxorubicin and docetaxel in patients with advanced breast cancer. Int J Clin Oncol 6(5):242–247PubMedGoogle Scholar
  106. 106.
    Wenzel C et al (2002) Phase I/II trial of weekly epidoxorubicin and docetaxel (wED) in the neoadjuvant and palliative treatment of patients with breast cancer. Cancer Chemother Pharmacol 50(2):155–159PubMedGoogle Scholar
  107. 107.
    Frasci G et al (2000) Weekly docetaxel plus gemcitabine or vinorelbine in refractory advanced breast cancer patients: a parallel dose-finding study. Southern Italy Cooperative Oncology Group (SICOG). Ann Oncol 11(3):367–371PubMedGoogle Scholar
  108. 108.
    Kornek GV et al (2001) Treatment of advanced breast cancer with vinorelbine and docetaxel with or without human granulocyte colony-stimulating factor. J Clin Oncol 19(3):621–627PubMedGoogle Scholar
  109. 109.
    Esteva FJ et al (2002) Phase II study of weekly docetaxel and trastuzumab for patients with HER-2-overexpressing metastatic breast cancer. J Clin Oncol 20(7):1800–1808PubMedGoogle Scholar
  110. 110.
    Tedesco KL et al (2004) Docetaxel combined with trastuzumab is an active regimen in HER-2 3+ overexpressing and fluorescent in situ hybridization-positive metastatic breast cancer: a multi-institutional phase II trial. J Clin Oncol 22(6):1071–1077PubMedGoogle Scholar
  111. 111.
    Raff JP et al (2004) Phase II study of weekly docetaxel alone or in combination with trastuzumab in patients with metastatic breast cancer. Clin Breast Cancer 4(6):420–427PubMedGoogle Scholar
  112. 112.
    Wenzel C et al (2004) Preoperative therapy with epidoxorubicin and docetaxel plus trastuzumab in patients with primary breast cancer: a pilot study. J Cancer Res Clin Oncol 130(7):400–404PubMedGoogle Scholar
  113. 113.
    Nyman DW et al (2005) Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patients with advanced nonhematologic malignancies. J Clin Oncol 23(31):7785–7793PubMedGoogle Scholar
  114. 114.
    Moreno-Aspitia A, Perez EA (2005) North Central Cancer Treatment Group N0531: phase II trial of weekly albumin-bound paclitaxel (ABI-007; Abraxane) in combination with gemcitabine in patients with metastatic breast cancer. Clin Breast Cancer 6(4):361–364PubMedGoogle Scholar
  115. 115.
    Stinchcombe TE et al (2007) Phase I and pharmacokinetic trial of carboplatin and albumin-bound paclitaxel, ABI-007 (Abraxane((R))) on three treatment schedules in patients with solid tumors. Cancer Chemother Pharmacol 60(5):759–766PubMedGoogle Scholar
  116. 116.
    Rowinsky EK et al (1991) Cardiac disturbances during the administration of taxol. J Clin Oncol 9(9):1704–1712PubMedGoogle Scholar
  117. 117.
    Shenkier T, Gelmon K (1994), Paclitaxel and radiation recall dermatitis [Letter]. J Clin Oncol 12:439PubMedGoogle Scholar
  118. 118.
    Francis PA et al (1994) Phase II trial of docetaxel in patients with stage III and IV non-small-cell lung cancer. J Clin Oncol 12(6):1232–1237PubMedGoogle Scholar
  119. 119.
    Extra JM et al (1993) Phase I and pharmacokinetic study of Taxotere (RP 56976; NSC 628503) given as a short intravenous infusion. Cancer Res 53(5):1037–1042PubMedGoogle Scholar
  120. 120.
    Pazdur R et al (1992) Phase I trial of Taxotere: five-day schedule. J Natl Cancer Inst 84(23):1781–1788PubMedGoogle Scholar
  121. 121.
    Bissett D et al (1993) Phase I and pharmacokinetic study of taxotere (RP 56976) administered as a 24-hour infusion. Cancer Res 53(3):523–527PubMedGoogle Scholar
  122. 122.
    Green MR et al (2006) Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol 17(8):1263–1268PubMedGoogle Scholar
  123. 123.
    Paridaens R et al (2000) Paclitaxel versus doxorubicin as first-line single-agent chemotherapy for metastatic breast cancer: a European Organization for Research and Treatment of Cancer randomized study with cross-over. J Clin Oncol 18(4):724–733PubMedGoogle Scholar
  124. 124.
    Sledge GW et al (2003) Phase III trial of doxorubicin, paclitaxel, and the combination of doxorubicin and paclitaxel as front-line chemotherapy for metastatic breast cancer: an Intergroup trial (E1193). J Clin Oncol 21(4):588–592PubMedGoogle Scholar
  125. 125.
    Chan S et al (1999) Prospective randomized trial of docetaxel versus doxorubicin in patients with metastatic breast cancer. J Clin Oncol 17(8):2341–2354PubMedGoogle Scholar
  126. 126.
    Ibrahim NK et al (2005) Multicenter phase II trial of ABI-007, an albumin-bound paclitaxel, in women with metastatic breast cancer. J Clin Oncol 23(25):6019–6026PubMedGoogle Scholar
  127. 127.
    Gradishar WJ et al (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23(31):7794–7803PubMedGoogle Scholar
  128. 128.
    Biganzoli L et al (2002) Doxorubicin and paclitaxel versus doxorubicin and cyclophosphamide as first-line chemotherapy in metastatic breast cancer: the European Organization for Research and Treatment of Cancer 10961 multicenter phase III trial. J Clin Oncol 20(14):3114–3121PubMedGoogle Scholar
  129. 129.
    Jassem J et al (2001) Doxorubicin and paclitaxel versus fluorouracil, doxorubicin, and cyclophosphamide as first-line therapy for women with metastatic breast cancer: final results of a randomized phase III multicenter trial. J Clin Oncol 19(6):1707–1715PubMedGoogle Scholar
  130. 130.
    Luck H, Thomssen C, Untch M, Kuhn W, Eidtmann H, du Bois A, Olbricht S, Moebus V, Steinfeld D, Bauknecht T, Schroeder W, Jackisch C (2000) Multicentric phase III study in first line treatment of advanced metastatic breast cancer (ABC). Epirubicin/Paclitaxel (ET) Vs Epirubicin/Cyclophosphamide (EC). A Study of the Ago Breast Cancer Group. Proc ASCO 19:73aGoogle Scholar
  131. 131.
    Crown J, O’Leary M, Ooi WS (2004) Docetaxel and paclitaxel in the treatment of breast cancer: a review of clinical experience. Oncologist 9(Suppl 2):24–32PubMedGoogle Scholar
  132. 132.
    Bonneterre J et al (2004) Phase II multicentre randomised study of docetaxel plus epirubicin vs 5-fluorouracil plus epirubicin and cyclophosphamide in metastatic breast cancer. Br J Cancer 91(8):1466–1471PubMedGoogle Scholar
  133. 133.
    Mackey JR, Paterson A, Drix LY et al (2002) Final results of the phase III randomized trial comparing docetaxel (T), doxorubicin (A) and cyclophosphamide (C) to FAC as first line chemotherapy (CT) for patients (pts) with metastatic breast cancer (MBC). in Proc ASCO 21:35aGoogle Scholar
  134. 134.
    Nabholtz JM et al (2003) Docetaxel and doxorubicin compared with doxorubicin and cyclophosphamide as first-line chemotherapy for metastatic breast cancer: results of a randomized, multicenter, phase III trial. J Clin Oncol 21(6):968–975PubMedGoogle Scholar
  135. 135.
    Bontenbal M et al (2005) Phase II to III study comparing doxorubicin and docetaxel with fluorouracil, doxorubicin, and cyclophosphamide as first-line chemotherapy in patients with metastatic breast cancer: results of a Dutch community setting trial for the clinical trial group of the comprehensive cancer centre. J Clin Oncol 23(28):7081–7088PubMedGoogle Scholar
  136. 136.
    Blum JL et al (2007) Phase II study of weekly albumin-bound paclitaxel for patients with metastatic breast cancer heavily pretreated with taxanes. Clin Breast Cancer 7(11):850–856PubMedGoogle Scholar
  137. 137.
    Roy V et al (2009) Phase II trial of weekly nab (nanoparticle albumin-bound)-paclitaxel (nab-paclitaxel) (Abraxane) in combination with gemcitabine in patients with metastatic breast cancer (N0531). Ann Oncol 20(3):449–453PubMedGoogle Scholar
  138. 138.
    Link JS et al (2007) Bevacizumab and albumin-bound paclitaxel treatment in metastatic breast cancer. Clin Breast Cancer 7(10):779–783PubMedGoogle Scholar
  139. 139.
    Untch M, Konecny G, Ditsch N et al (2002) Dose-dense sequential epirubicin-paclitaxel as preoperative treatment of breast cancer: results of a randomized AGO study. Proc ASCO 21:133aGoogle Scholar
  140. 140.
    Green MC et al (2005) Weekly paclitaxel improves pathologic complete remission in operable breast cancer when compared with paclitaxel once every 3 weeks. J Clin Oncol 23(25):5983–5992PubMedGoogle Scholar
  141. 141.
    Bear HD et al (2006) Sequential preoperative or postoperative docetaxel added to preoperative doxorubicin plus cyclophosphamide for operable breast cancer: national surgical adjuvant breast and bowel project protocol B-27. J Clin Oncol 24(13):2019–2027PubMedGoogle Scholar
  142. 142.
    Hutcheon AW, Heys SD, Sarkar TK (2003) Neoadjuvant docetaxel in locally advanced breast cancer. Breast Cancer Res Treat 79(Suppl 1):S19–S24PubMedGoogle Scholar
  143. 143.
    von Minckwitz G et al (2005) Doxorubicin with cyclophosphamide followed by docetaxel every 21 days compared with doxorubicin and docetaxel every 14 days as preoperative treatment in operable breast cancer: the GEPARDUO study of the German breast group. J Clin Oncol 23(12):2676–2685Google Scholar
  144. 144.
    Evans TR et al (2005) Phase III randomized trial of doxorubicin and docetaxel versus doxorubicin and cyclophosphamide as primary medical therapy in women with breast cancer: an anglo-celtic cooperative oncology group study. J Clin Oncol 23(13):2988–2995PubMedGoogle Scholar
  145. 145.
    Henderson IC et al (2003) Improved outcomes from adding sequential Paclitaxel but not from escalating Doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer. J Clin Oncol 21(6):976–983PubMedGoogle Scholar
  146. 146.
    Mamounas EP et al (2005) Paclitaxel after doxorubicin plus cyclophosphamide as adjuvant chemotherapy for node-positive breast cancer: results from NSABP B-28. J Clin Oncol 23(16):3686–3696PubMedGoogle Scholar
  147. 147.
    Martin M et al (2005) Adjuvant docetaxel for node-positive breast cancer. N Engl J Med 352(22):2302–2313PubMedGoogle Scholar
  148. 148.
    Pienta KJ (2001) Preclinical mechanisms of action of docetaxel and docetaxel combinations in prostate cancer. Semin Oncol 28(4 Suppl 15):3–7PubMedGoogle Scholar
  149. 149.
    Raghavan D (2004) Chemotherapy for prostate cancer: small steps or leaps and bounds? No huzzahs just yet! Br J Cancer 91(6):1003–1004Google Scholar
  150. 150.
    Canil CM, Tannock IF (2004) Is there a role for chemotherapy in prostate cancer? Br J Cancer 91(6):1005–1011PubMedGoogle Scholar
  151. 151.
    Tannock IF et al (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351(15):1502–1512PubMedGoogle Scholar
  152. 152.
    Petrylak DP et al (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351(15):1513–1520PubMedGoogle Scholar
  153. 153.
    Berthold DR, Pond G, de Wit R et al (2007) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival of the TAX 327 study. Proc ASCO Abstract #147 Prostate Cancer SymposiumGoogle Scholar
  154. 154.
    Ramalingam S, Belani C (2008) Systemic chemotherapy for advanced non-small cell lung cancer: recent advances and future directions. Oncologist 13(Suppl 1):5–13PubMedGoogle Scholar
  155. 155.
    Ramalingam S, Sandler AB (2006) Salvage therapy for advanced non-small cell lung cancer: factors influencing treatment selection. Oncologist 11(6):655–665PubMedGoogle Scholar
  156. 156.
    Sandler A et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355(24):2542–2550PubMedGoogle Scholar
  157. 157.
    Stinchcombe TE, Socinski MA (2008) Considerations for second-line therapy of non-small cell lung cancer. Oncologist 13(Suppl 1):28–36PubMedGoogle Scholar
  158. 158.
    Hanna N et al (2004) Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol 22(9):1589–1597PubMedGoogle Scholar
  159. 159.
    Shepherd FA et al (2000) Prospective randomized trial of docetaxel versus best supportive care in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy. J Clin Oncol 18(10):2095–2103PubMedGoogle Scholar
  160. 160.
    Fossella FV et al (2000) Randomized phase III trial of docetaxel versus vinorelbine or ifosfamide in patients with advanced non-small-cell lung cancer previously treated with platinum-containing chemotherapy regimens. The TAX 320 non-small cell lung cancer study group. J Clin Oncol 18(12):2354–2362PubMedGoogle Scholar
  161. 161.
    Rizvi NA et al (2008) Phase I/II trial of weekly intravenous 130-nm albumin-bound paclitaxel as initial chemotherapy in patients with stage IV non-small-cell lung cancer. J Clin Oncol 26(4):639–643PubMedGoogle Scholar
  162. 162.
    McGuire WP et al (1996) Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med 334(1):1–6PubMedGoogle Scholar
  163. 163.
    Ozols RF et al (2003) Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a gynecologic oncology group study. J Clin Oncol 21(17):3194–3200PubMedGoogle Scholar
  164. 164.
    Armstrong DK et al (2006) Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med 354(1):34–43PubMedGoogle Scholar
  165. 165.
    Teneriello MG et al (2009) Phase II evaluation of nanoparticle albumin-bound paclitaxel in platinum-sensitive patients with recurrent ovarian, peritoneal, or fallopian tube cancer. J Clin Oncol 27(9):1426–1431PubMedGoogle Scholar
  166. 166.
    Bourhis J (2005) New approaches to enhance chemotherapy in SCCHN. Ann Oncol 16(Suppl 6):vi20–vi24PubMedGoogle Scholar
  167. 167.
    Amato RJ (2005) Renal cell carcinoma: review of novel single-agent therapeutics and combination regimens. Ann Oncol 16(1):7–15PubMedGoogle Scholar
  168. 168.
    Roth AD, Ajani J (2003) Docetaxel-based chemotherapy in the treatment of gastric cancer. Ann Oncol 14(Suppl 2):ii41–ii44PubMedGoogle Scholar
  169. 169.
    Scheithauer W (2004) Esophageal cancer: chemotherapy as palliative therapy. Ann Oncol 15(Suppl 4):iv97–iv100PubMedGoogle Scholar
  170. 170.
    Galsky MD (2005) The role of taxanes in the management of bladder cancer. Oncologist 10(10):792–798PubMedGoogle Scholar
  171. 171.
    Hennenfent KL, Govindan R (2006) Novel formulations of taxanes: a review. Old wine in a new bottle? Ann Oncol 17(5):735–749PubMedGoogle Scholar
  172. 172.
    Gerth K et al (1996) Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physico-chemical and biological properties. J Antibiot (Tokyo) 49(6):560–563Google Scholar
  173. 173.
    Bollag DM et al (1995) Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 55(11):2325–2333PubMedGoogle Scholar
  174. 174.
    Kowalski RJ, Giannakakou P, Hamel E (1997) Activities of the microtubule-stabilizing agents epothilones A and B with purified tubulin and in cells resistant to paclitaxel (Taxol(R)). J Biol Chem 272(4):2534–2541PubMedGoogle Scholar
  175. 175.
    Kamath K, Jordan MA (2003) Suppression of microtubule dynamics by epothilone B is associated with mitotic arrest. Cancer Res 63(18):6026–6031PubMedGoogle Scholar
  176. 176.
    Nettles JH et al (2004) The binding mode of epothilone A on alpha,beta-tubulin by electron crystallography. Science 305(5685):866–869PubMedGoogle Scholar
  177. 177.
    Bode CJ et al (2002) Epothilone and paclitaxel: unexpected differences in promoting the assembly and stabilization of yeast microtubules. Biochemistry 41(12):3870–3874PubMedGoogle Scholar
  178. 178.
    Cortes J, Baselga J (2007) Targeting the microtubules in breast cancer beyond taxanes: the epothilones. Oncologist 12(3):271–280PubMedGoogle Scholar
  179. 179.
    Wartmann M, Altmann KH (2002) The biology and medicinal chemistry of epothilones. Curr Med Chem Anticancer Agents 2(1):123–148PubMedGoogle Scholar
  180. 180.
    Nicolaou KC et al (1997) Synthesis of epothilones A and B in solid and solution phase. Nature 387(6630):268–272PubMedGoogle Scholar
  181. 181.
    Lee FY et al (2001) BMS-247550: a novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor efficacy. Clin Cancer Res 7(5):1429–1437PubMedGoogle Scholar
  182. 182.
    Chou TC et al (1998) Desoxyepothilone B: an efficacious microtubule-targeted antitumor agent with a promising in vivo profile relative to epothilone B. Proc Natl Acad Sci USA 95(16):9642–9647PubMedGoogle Scholar
  183. 183.
    Newman RA et al (2001) Antitumor efficacy of 26-fluoroepothilone B against human prostate cancer xenografts. Cancer Chemother Pharmacol 48(4):319–326PubMedGoogle Scholar
  184. 184.
    Schinkel AH (1997) The physiological function of drug-transporting P-glycoproteins. Semin Cancer Biol 8(3):161–170PubMedGoogle Scholar
  185. 185.
    Giannakakou P et al (2000) A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proc Natl Acad Sci USA 97(6):2904–2909PubMedGoogle Scholar
  186. 186.
    Verrills NM et al (2003) Microtubule alterations and mutations induced by desoxyepothilone B: implications for drug-target interactions. Chem Biol 10(7):597–607PubMedGoogle Scholar
  187. 187.
    Forster M et al (2007) A phase Ib and pharmacokinetic trial of patupilone combined with carboplatin in patients with advanced cancer. Clin Cancer Res 13(14):4178–4184PubMedGoogle Scholar
  188. 188.
    Goodin S, Kane MP, Rubin EH (2004) Epothilones: mechanism of action and biologic activity. J Clin Oncol 22(10):2015–2025PubMedGoogle Scholar
  189. 189.
    Mani S et al (2004) Phase I clinical and pharmacokinetic study of BMS-247550, a novel derivative of epothilone B, in solid tumors. Clin Cancer Res 10(4):1289–1298PubMedGoogle Scholar
  190. 190.
    Abraham J et al (2003) Phase I trial and pharmacokinetic study of BMS-247550, an epothilone B analog, administered intravenously on a daily schedule for five days. J Clin Oncol 21(9):1866–1873PubMedGoogle Scholar
  191. 191.
    McDaid HM et al (2002) Validation of the pharmacodynamics of BMS-247550, an analogue of epothilone B, during a phase I clinical study. Clin Cancer Res 8(7):2035–2043PubMedGoogle Scholar
  192. 192.
    Spriggs D, Soignet SA, Bienvenu B et al (2001) Phase I first in man study of epothilone B analog BMS-247550 in patients with advanced cancer. Proc ASCO 20:108a, Abstract #428Google Scholar
  193. 193.
    Gadgeel SM et al (2005) Phase I clinical trial of BMS-247550, a derivative of epothilone B, using accelerated titration 2B design. Clin Cancer Res 11(17):6233–6239PubMedGoogle Scholar
  194. 194.
    Zhuang SH et al (2005) A Phase I clinical trial of ixabepilone (BMS-247550), an epothilone B analog, administered intravenously on a daily schedule for 3 days. Cancer 103(9):1932–1938PubMedGoogle Scholar
  195. 195.
    Awada A, Bleiberg H, de Valeriola D et al (2001) Phase I clinical and pharmacology study of the epothilone analog BMS-247550 given weekly in patients with advanced solid tumors. Proc ASCO 20:103a, Abstract #421Google Scholar
  196. 196.
    Hao D, Hammond LA, deBono JS et al (2002) Continuous weekly administration of the epothilone-B derivative, BMS-247550 (NSC710428): a phase I and pharmacokinetic study. Proc ASCO 21:103a, Abstract #411Google Scholar
  197. 197.
    Burris HA 3rd, Jones S et al (2002) Phase I study of the novel epothilone BMS-247550 administered weekly in patients with advanced malignancies. Proc ASCO 21:103a, Abstract #412aGoogle Scholar
  198. 198.
    Plummeer R, Molife R, Verrill M et al (2002) Phase I and pharmacokinetic study of BMS-247550 in combination with carboplatin in patients with advanced solid malignancies. Proc Am Soc Clin Oncol 21:78bGoogle Scholar
  199. 199.
    Smaletz O et al (2003) Pilot study of epothilone B analog (BMS-247550) and estramustine phosphate in patients with progressive metastatic prostate cancer following castration. Ann Oncol 14(10):1518–1524PubMedGoogle Scholar
  200. 200.
    Galsky MD et al (2005) Multi-institutional randomized phase II trial of the epothilone B analog ixabepilone (BMS-247550) with or without estramustine phosphate in patients with progressive castrate metastatic prostate cancer. J Clin Oncol 23(7):1439–1446PubMedGoogle Scholar
  201. 201.
    Gianni L (2007) Ixabepilone and the narrow path to developing new cytotoxic drugs. J Clin Oncol 25(23):3389–3391PubMedGoogle Scholar
  202. 202.
    Perez EA et al (2007) Efficacy and safety of ixabepilone (BMS-247550) in a phase II study of patients with advanced breast cancer resistant to an anthracycline, a taxane, and capecitabine. J Clin Oncol 25(23):3407–3414PubMedGoogle Scholar
  203. 203.
    Denduluri N et al (2007) Phase II trial of ixabepilone, an epothilone B analog, in patients with metastatic breast cancer previously untreated with taxanes. J Clin Oncol 25(23):3421–3427PubMedGoogle Scholar
  204. 204.
    Roche H et al (2007) Phase II clinical trial of ixabepilone (BMS-247550), an epothilone B analog, as first-line therapy in patients with metastatic breast cancer previously treated with anthracycline chemotherapy. J Clin Oncol 25(23):3415–3420PubMedGoogle Scholar
  205. 205.
    Vansteenkiste J et al (2007) Phase II clinical trial of the epothilone B analog, ixabepilone, in patients with non small-cell lung cancer whose tumors have failed first-line platinum-based chemotherapy. J Clin Oncol 25(23):3448–3455PubMedGoogle Scholar
  206. 206.
    Thomas ES et al (2007) Ixabepilone plus capecitabine for metastatic breast cancer progressing after anthracycline and taxane treatment. J Clin Oncol 25(33):5210–2517PubMedGoogle Scholar
  207. 207.
    Low JA et al (2005) Phase II clinical trial of ixabepilone (BMS-247550), an epothilone B analog, in metastatic and locally advanced breast cancer. J Clin Oncol 23(12):2726–2734PubMedGoogle Scholar
  208. 208.
    Roche H, Cure H, Bunnell C et al (2003) A phase II study of epothilone analog BMS-247550 in patients with metastatic breast cancer previously treated with an anthracycline. Proc ASCO 24:586aGoogle Scholar
  209. 209.
    Llombart A, Baselga J, Manikhas G et al (2005) Phase II genomics study in patients receiving ixabepilone as neoadjuvant treatment for breast cancer: preliminary efficacy and safety data. Proc ASCO 24:586aGoogle Scholar
  210. 210.
    Chen TL, Calvert AH et al (2002) Pharmacokinetics of EPO906 in cancer patients receiving EPO906 by short intravenous infusion once every 3 weeks. Proc ASCO 21:91a, Abstract #413Google Scholar
  211. 211.
    Rubin, EH, Siu, LL, Beers S et al (2001) A phase I and pharmacokindtic trial of weekly epothiline B in patients with advanced malignancies. Proc ASCO 20:68a, Abstract #270Google Scholar
  212. 212.
    Calvert AH, O’Neill V, Twelves C et al (2001) A phase I and pharmacokinetic study of EPO906 (epothilone B), given every three weeks, in patients with advanced solid malignancies. Proc ASCO 20:108a, Abstract #429Google Scholar
  213. 213.
    Ten Bokkel Huinink WW et al (2009) Safety and efficacy of patupilone in patients with advanced ovarian, primary fallopian, or primary peritoneal cancer: a phase I, open-label, dose-escalation study. J Clin Oncol 27(19):3097–3103PubMedGoogle Scholar
  214. 214.
    Forster M, Kaye S, Oza A, Sklenar I, Johri A, Cheung W, Zaknoen S, Gore M (2007) A phase Ib and pharmacokinetic trial of patupilone combined with carboplatin in patients with advanced cancer. Clin Cancer Res 13(14):4178–4184PubMedGoogle Scholar
  215. 215.
    Schelman W et al (2008) A phase I trial of gemcitabine in combination with patupilone in patients with advanced solid tumors. Cancer Chemother Pharmacol 62(4):727–733PubMedGoogle Scholar
  216. 216.
    Mekhail T et al (2003) Phase I trial of novel epothilone B analog BMS-310705 IV q 21 days. Proc ASCO 22:130, Abstract #515Google Scholar
  217. 217.
    Piro LD, Rosen LS, Parson M et al (2003) KOS-862 (Epothilone D) a comparison of two schedules in patients with advanced malignancies. Proc ASCO 22:135, Abstract #539Google Scholar
  218. 218.
    Spriggs D, Pezzulli S et al (2003) KOS-862 (epothilone D): phase I dose escalating and pharmacokinetic study in patients with advanced malignancies. Proc ASCO 22:223, Abstract #894Google Scholar
  219. 219.
    Cortes J, Gomez P et al (2006) A phase I trial of weekly combination KOS-862 (epothilone D) and trastuzumab in HER-2 overexpressing melignancies. Proc ASCO 25:2028aGoogle Scholar
  220. 220.
    Schmid P, Kuehnhardt D et al (2005) A phase I study of the novel, third generation epothilone ZK-EPO in patients with advanced solid tumors. Proc ASCO 24:2051aGoogle Scholar
  221. 221.
    Arnold D et al (2009) Weekly administration of sagopilone (ZK-EPO), a fully synthetic epothilone, in patients with refractory solid tumours: results of a phase I trial. Br J Cancer 101(8):1241–1247PubMedGoogle Scholar
  222. 222.
    Rubin EH et al (2005) Phase I dose-finding study of weekly single-agent patupilone in patients with advanced solid tumors. J Clin Oncol 23(36):9120–9129PubMedGoogle Scholar
  223. 223.
    Sessa C, Malossi A et al (2003) Phase I and pharmacokinetic study of the novel epothilone BMS-31–705 in patients with advanced solid cancer. Proc ASCO 22:519aGoogle Scholar
  224. 224.
    Sessa C et al (2007) Phase I clinical study of the novel epothilone B analogue BMS-310705 given on a weekly schedule. Ann Oncol 18(9):1548–1553PubMedGoogle Scholar
  225. 225.
    Holen KZD, Hannah AL et al (2004) Phase I study using continuous intravenous KOS-862 (Epothilone D) in patients with solid tumors. Proc ASCO 23:2024aGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Melanoma Research CenterPacific Oncology and Hematology AssociatesSan DiegoUSA

Personalised recommendations