Chitin pp 35-60 | Cite as

Chitin in the Exoskeletons of Arthropoda: From Ancient Design to Novel Materials Science

  • H. FabritiusEmail author
  • C. Sachs
  • D. Raabe
  • S. Nikolov
  • M. Friák
  • J. Neugebauer
Part of the Topics in Geobiology book series (TGBI, volume 34)


The Arthropoda use chitin and various proteins as basic materials of their cuticle which is forming their exoskeletons. The exoskeleton is composed of skeletal elements with physical properties that are adapted to their function and the eco-physiological strains of the animal. These properties are achieved by forming elaborate microstructures that are organized in several hierarchical levels like the so-called twisted plywood structure, which is built by stacks of planar arrays of complex chitin-protein fibres. Additionally, the properties are influenced by variations in the chemical composition of the cuticle, for instance by combining the organic material with inorganic nano-particles. From a materials science point of view, this makes the cuticle to a hierarchical composite material of high functional versatility. The detailed investigation of microstructure, chemical composition and mechanical properties of cuticle from different skeletal elements of the crustacean Homarus americanus shows that cuticle can combine different design principles to create a high-performance anisotropic material. Numerical modelling of the cuticle using ab initio and multiscale approaches even enables the study of mechanical properties on hierarchical levels where experimental methods can no longer be applied. Understanding and eventually applying the underlying design principles of cuticle bears the potential for realization of a completely new generation of man-made structural materials.


Chitin Biological materials Multi-scale model Mechanical properties 


  1. Andersen SO (1979) Biochemistry of insect cuticle. Annu Rev Entomol 24:29–61CrossRefGoogle Scholar
  2. Benveniste Y (1987) A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech Mater 6:147–157CrossRefGoogle Scholar
  3. Benveniste Y, Dvorak GJ, Chen T (1991) On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media. J Mech Phys Solids 39:927–946CrossRefGoogle Scholar
  4. Boßelmann F, Romano P, Fabritius H, Raabe D, Epple M (2007) The composition of the exoskeleton of two crustacea: the american lobster Homarus americanus and the edible crab Cancer pagurus. Thermochim Acta 463:65–68CrossRefGoogle Scholar
  5. Bouligand Y (1970) Aspects ultrastructuraux de la calcification chez les Crabes, in: 7e Congrès int. Microsc. Électr., Grenoble, France, t. 3, 105–106Google Scholar
  6. Brusca RC (2000) Unraveling the history of arthropod diversification. Ann Mo Bot Gard 87:13–25CrossRefGoogle Scholar
  7. Carlström D (1957) The crystal structure of α-chitin (Poly-N-Acetyl-D-Glucosamine). J Biophys Biochem Cytol 3:669–683CrossRefGoogle Scholar
  8. Chen JC, Ramsköld L, Zhou G (1994) Evidence for monophyly and arthropod affinity of cambrian giant predators. Science 263:1304–1308CrossRefGoogle Scholar
  9. Dillaman RM, Hequembourg S, Gay M (2005) Early pattern of calcification in the dorsal carapace of the blue crab, Callinectes sapidus. J Morphol 263:356–374CrossRefGoogle Scholar
  10. Dow MB, Dexter HB (1997) Development of stitched, braided and woven composite structures in the ACT program and at Langley research center (1985 to 1997) summary and bibliography. NASA CASI 301:621–0390Google Scholar
  11. Edgecombe GD (ed) (1998) Arthropod fossils and phylogeny. Columbia University Press, New York, USAGoogle Scholar
  12. Fabritius H, Sachs C, Romano P, Raabe D (2009) Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: the exoskeleton of the lobster Homarus americanus. Adv Mater 21:391–400CrossRefGoogle Scholar
  13. Gibson LJ, Ashby MF (1997) Cellular solids – structure and properties, 2nd edn. Cambridge University Press, Cambridge, UKGoogle Scholar
  14. Giraud-Guille M-M (1984) Fine structure of the chitin-protein system in the crab cuticle. Tissue Cell 16:75–92CrossRefGoogle Scholar
  15. Giraud-Guille M-M (1990) Chitin crystals in arthropod cuticles revealed by diffraction contrast transmission electron microscopy. J Struct Biol 103:232–240CrossRefGoogle Scholar
  16. Giraud-Guille M-M (1998) Plywood structures in nature. Curr Opin Solid State Mater Sci 3:221–228CrossRefGoogle Scholar
  17. Gupta HS, Stachewicz U, Wagermaier W (2006) Mechanical modulation at the lamellar level in osteonal bone. J Mater Res 21:1913–1921CrossRefGoogle Scholar
  18. Hadley NF (1986) The arthropod cuticle. Sci Am 255:98–106CrossRefGoogle Scholar
  19. Hepburn HR, Joffe I, Green N, Nelson KJ (1975) Mechanical properties of a crab shell. Comp Biochem Physiol 50A:55l–554Google Scholar
  20. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871CrossRefGoogle Scholar
  21. Jalkanen KJ, Elstner M, Suhai S (2004) Amino acids and small peptides as building blocks for proteins: comparative theoretical and spectroscopic studies. J Mol Struct THEOCHEM 675:61–77CrossRefGoogle Scholar
  22. Joffe I, Hepburn HR, Nelson KJ, Green N (1975) Mechanical properties of a crustacean exoskeleton. Comp Biochem Physiol 50A:545–549CrossRefGoogle Scholar
  23. Khor E (2001) Chitin: fulfilling a biomaterials promise. Elsevier Science, Amsterdam, The NederlandsGoogle Scholar
  24. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138CrossRefGoogle Scholar
  25. Minke R, Blackwell J (1978) The structure of α-chitin. Mol Biol 120:167–181CrossRefGoogle Scholar
  26. Mori T, Tanaka K (1973) Average stress in matrx and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574CrossRefGoogle Scholar
  27. Müller KJ, Walossek D (1985) A remarkable arthropod fauna from the Upper Cambrian “Orsten” of Sweden. Trans R Soc Edin Earth Sci 76:161–172CrossRefGoogle Scholar
  28. Muzzarelli RAA (1977) Chitin. Pergamon, Oxford, UKGoogle Scholar
  29. Nikolov S, Raabe D (2008) Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization. Biophys J 94:4220–4232CrossRefGoogle Scholar
  30. Nikolov S, Petrov M, Lymperakis L, Friák M, Sachs C, Fabritius H, Raabe D, Neugebauer J (2010) Revealing the design principles of high-performance biological composites using ab initio multiscale simulations. Adv Mater 22:519–526 Google Scholar
  31. Papka DS, Kyriakides S (1998) In-plane crushing of a polycarbonate honeycomb. Int J Solids Struct 35:239–267CrossRefGoogle Scholar
  32. Piggott MR (1980) Load bearing fibre composites, 2nd edn. Kluwer, Norwell, USAGoogle Scholar
  33. Raabe D, Romano P, Sachs C, Al-Sawalmih A, Brokmeier H-G, Yi S-B, Servos G, Hartwig HG (2005) Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue. J Cryst Growth 283:1–7CrossRefGoogle Scholar
  34. Raabe D, Romano P, Sachs C, Fabritius H, Al-Sawalmih A, Yi S-B, Servos G, Hartwig HG (2006) Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Mater Sci Eng, A 421:143–153CrossRefGoogle Scholar
  35. Ravindran P, Fast L, Korzhavyi PA, Johansson B, Wills J, Eriksson J (1998) Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. J Appl Phys 84:4891–4904CrossRefGoogle Scholar
  36. Roer RD, Dillaman RM (1984) The structure and calcification of the crustacean cuticle. Am Zool 24:893–909Google Scholar
  37. Romano P, Fabritius H, Raabe D (2007) The exoskeleton of the lobster Homarus americanus as an example of a smart anisotropic biological material. Acta Biomater 3:301–309CrossRefGoogle Scholar
  38. Sachs C, Fabritius H, Raabe D (2006a) Experimental investigation of the elastic-plastic deformation behavior of mineralized cuticle by digital image correlation. J Struct Biol 155:409–425CrossRefGoogle Scholar
  39. Sachs C, Fabritius H, Raabe D (2006b) Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation. J Mater Res 21:1987–1995CrossRefGoogle Scholar
  40. Sachs C, Fabritius H, Raabe D (2008) Influence of microstructure on deformation anisotropy of mineralized cuticle from the lobster Homarus americanus. J Struct Biol 161:120–132CrossRefGoogle Scholar
  41. Suresh S (2004) Fatigue of materials, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  42. Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C (2007) Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater 6:454–462CrossRefGoogle Scholar
  43. Torquato S (1998) Effective stiffness tensor of composite media: II. Applications to isotropic dispersions. J Mech Phys Solids 46:1411–1440CrossRefGoogle Scholar
  44. Vincent JFV (2002) Arthropod cuticle: a natural composite shell system. Compos A 33:1311–1315CrossRefGoogle Scholar
  45. Vincent JFV, Wegst UGK (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Dev 33:187–199CrossRefGoogle Scholar
  46. Weiner S, Addadi L (1997) Design strategies in mineralized biological materials. J Mater Chem 7:689–702CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • H. Fabritius
    • 1
    Email author
  • C. Sachs
    • 2
  • D. Raabe
    • 1
  • S. Nikolov
    • 3
  • M. Friák
    • 4
  • J. Neugebauer
    • 4
  1. 1.Department Microstructure Physics and Metal FormingMax-Planck-Institut für EisenforschungDüsseldorfGermany
  2. 2.Department of Mechanical EngineeringMITCambridgeUSA
  3. 3.Institute of MechanicsBulgarian Academy of SciencesSofiaBulgaria
  4. 4.Department Computational Materials DesignMax-Planck-Institut für EisenforschungDüsseldorfGermany

Personalised recommendations