Insect-Associated Microorganisms as a Source for Novel Secondary Metabolites with Therapeutic Potential

Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 2)

Abstract

Natural products play an essential role in our everyday life as almost all antibiotics or anti-cancer compounds currently in clinical use are either natural products or derivatives thereof. Mainly due to increasing resistance against these antibiotics there is an urgent need for novel bioactive natural products and several strategies are currently in use to find new compounds. In this chapter insects are suggested as a new and very promising source for novel secondary metabolite-producing bacteria and fungi. Whereas entomopathogenic fungi have been known for quite some time as potent producers of different bioactive compounds and have been used in traditional Chinese medicine for more than 2000 years, almost nothing is known about the underlying biochemistry and molecular biology that is involved in the biosynthesis of such compounds. Similarly, entomopathogenic bacteria have only been proven to be a rich source of interesting compounds during the last 20 years and recent genome sequencing projects have revealed their great potential as secondary metabolite producers. Furthermore, bacteria that live in symbiosis with insects have also been shown to be a rich source of potent natural products which have to be explored in the future in more detail.

Keywords

Secondary metabolites Entomopathogenic and insect-associated microorganisms Drug discovery Bacteria Fungi 

References

  1. Azumi M, Ishidoh K, Kinoshita H, Nihira T, Ihara F, Fujita T, Igarashi Y (2008) Aurovertins F-H from the entomopathogenic fungus Metarhizium anisopliae. J Nat Prod 71:278–280CrossRefPubMedGoogle Scholar
  2. Basset A, Khush RS, Braun A, Gardan L, Boccard F, Hoffmann JA, Lemaitre B (2000) The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response. Proc Natl Acad Sci USA 97:3376–3381CrossRefPubMedGoogle Scholar
  3. Bode HB, Bethe B, Hofs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. Chembiochem 3:619–627CrossRefPubMedGoogle Scholar
  4. Bode HB, Müller R (2005) The impact of bacterial genomics on natural product research. Angew Chem Int Ed 44:6828–6846CrossRefGoogle Scholar
  5. Brachmann AO, Joyce SA, Jenke-Kodama H, Schwär G, Clarke DJ, Bode HB (2007) A type II polyketide synthase is responsible for anthraquinone biosynthesis in Photorhabdus luminescens. Chembiochem 8:1721–1728CrossRefPubMedGoogle Scholar
  6. Challacombe JF, Altherr MR, Xie G, Bhotika SS, Brown N, Bruce D (2007) The complete genome sequence of Bacillus thuringiensis Al Hakam. J Bacteriol 189:3680–3681CrossRefPubMedGoogle Scholar
  7. Champion OL, Cooper IA, James SL, Ford D, Karlyshev A, Wren BW, Duffield M, Oyston PC, Titball RW (2009) Galleria mellonella as an alternative infection model for Yersinia pseudotuberculosis. Microbiology 155:1516–1522CrossRefPubMedGoogle Scholar
  8. Chapman ADA (2007) Report for the Department of the Environment and Heritage, September 2005. Australian Biodiversity Information Services, Toowoomba, Australia. www.environment.gov.au/biodiversity/abrs/publications/other/species-numbers/03-02-groups-invertebrates.html
  9. Chen XH, Koumoutsi A, Scholz R, Borriss R (2009) More than anticipated - production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. J Mol Microbiol Biotechnol 16:14–24CrossRefPubMedGoogle Scholar
  10. Ciche TA, Blackburn M, Carney JR, Ensign JC (2003) Photobactin: a catechol siderophore produced by Photorhabdus luminescens, an entomopathogen mutually associated with Heterorhabditis bacteriophora NC1 nematodes. Appl Environ Microbiol 69:4706–4713CrossRefPubMedGoogle Scholar
  11. Currie CR (2001) A community of ants, fungi, and bacteria: a multilateral approach to studying symbiosis. Annu Rev Microbiol 55:357–380CrossRefPubMedGoogle Scholar
  12. Currie CR, Scott JA, Summerbell RC, Malloch D (1999) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701–704CrossRefGoogle Scholar
  13. Derzelle S, Duchaud E, Kunst F, Danchin A, Bertin P (2002) Identification, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in Photorhabdus luminescens. Appl Environ Microbiol 68:3780–3789CrossRefPubMedGoogle Scholar
  14. Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 21:1307–1313CrossRefPubMedGoogle Scholar
  15. Eleftherianos I, Boundy S, Joyce SA, Aslam S, Marshall JW, Cox RJ, Simpson TJ, Clarke DJ, ffrench-Constant RH, Reynolds SE (2007) An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc Natl Acad Sci USA 104:2419–2424CrossRefPubMedGoogle Scholar
  16. ffrench-Constant R, Waterfield N (2006) An ABC guide to the bacterial toxin complexes. Adv Appl Microbiol 58:169–183CrossRefPubMedGoogle Scholar
  17. Fodor A, Forst S, Haynes L, Hevesi M, Hogan J, Klein MG, Mathe-Fodor A, Stackebrndt E, Szentirmai A, Sztaricskai F, Ersek T, Zeller M (2008) New perspectives of Xenorhabdus antibiotics research. In: Ehlers, RU, Enkerli, J, Glazer, I, Lopez-Ferber, M, and Tkaczuk, C (eds) IOBC/WPRS Bulletin: Insect pathogens and insect parasitic nematodes. IOBC/WPRS, Alès, pp 157–164Google Scholar
  18. Goodrich-Blair H, Clarke DJ (2007) Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol Microbiol 64:260–268CrossRefPubMedGoogle Scholar
  19. Gouge DH, Snyder JL (2006) Temporal association of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) and bacteria. J Invertebr Pathol 91:147–157CrossRefPubMedGoogle Scholar
  20. Grimont PAD, Jackson TA, Ageron E, Noonan MJ (1988) Serratia entomophila sp. nov. associated with amber disease in the New Zealand grass grub Costelytra Zealandica. Int J Syst Bacteriol 38:1–6CrossRefGoogle Scholar
  21. Haeder S, Wirth R, Herz H, Spiteller D (2009) Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Natl Acad Sci USA 106:4742–4746CrossRefPubMedGoogle Scholar
  22. Han CS, Xie G, Challacombe JF, Altherr MR, Bhotika SS, Bruce D (2006) Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. J Bacteriol 188:3382–3390CrossRefPubMedGoogle Scholar
  23. Hawksworth DL, Rossman AY (1997) Where are all the undescribed fungi? Phytopathology 87:888–891CrossRefPubMedGoogle Scholar
  24. Herbert EE, Goodrich-Blair H (2007) Friend and foe: the two faces of Xenorhabdus nematophila. Nat Rev Microbiol 5:634–646CrossRefPubMedGoogle Scholar
  25. Hofstetter RW, Cronin JT, Klepzig KD, Moser JC, Ayres MP (2006) Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle. Oecologia 147:679–691CrossRefPubMedGoogle Scholar
  26. Hu KJ, Li JX, Li B, Webster JM, Chen GH (2006) A novel antimicrobial epoxide isolated from larval Galleria mellonella infected by the nematode symbiont, Photorhabdus luminescens (Enterobacteriaceae). Bioorg Med Chem 14:4677–4681CrossRefPubMedGoogle Scholar
  27. Hywel-Jones NL (2002) The importance of invertebrate-pathogenic fungi from the tropics. Trop Mycol 2:133–144CrossRefGoogle Scholar
  28. Isaka M, Kittakoop P, Kirtikara K, Hywel-Jones NL, Thebtaranonth Y (2005) Bioactive substances from insect pathogenic fungi. Acc Chem Res 38:813–823CrossRefPubMedGoogle Scholar
  29. Ji D, Yi Y, Kang GH, Choi YH, Kim P, Baek NI, Kim Y (2004) Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol Lett 239:241–248CrossRefPubMedGoogle Scholar
  30. Joyce SA, Brachmann AO, Glazer I, Lango L, Schwär G, Clarke DJ, Bode HB (2008) Bacterial biosynthesis of a multipotent stilbene. Angew Chem Int Ed 47:1942–1945CrossRefGoogle Scholar
  31. Kaltenpoth M, Goettler W, Dale C, Stubblefield JW, Herzner G, Roeser-Mueller K, Strohm E (2006) ‘Candidatus Streptomyces philanthi’, an endosymbiotic streptomycete in the antennae of Philanthus digger wasps. Int J Syst Evol Microbiol 56:1403–1411CrossRefPubMedGoogle Scholar
  32. Kaltenpoth M, Gottler W, Herzner G, Strohm E (2005) Symbiotic bacteria protect wasp larvae from fungal infestation. Curr Biol 15:475–479CrossRefPubMedGoogle Scholar
  33. Kevany BM, Rasko DA, Thomas MG (2009) Characterization of the complete zwittermicin A biosynthesis gene cluster from Bacillus cereus. Appl Environ Microbiol 75: 1144–1155CrossRefPubMedGoogle Scholar
  34. Kikuchi H, Hoshi T, Kitayama M, Sekiya M, Katou Y, Ueda K, Kubohara Y, Sato H, Shimazu M, Kurata S, Oshima Y (2009) New diterpene pyrone-type compounds, metarhizins A and B, isolated from entomopathogenic fungus, Metarhizium flavoviride and their inhibitory effects on cellular proliferation. Tetrahedron 65:469–477CrossRefGoogle Scholar
  35. Krasnoff SB, Keresztes I, Gillilan RE, Szebenyi DM, Donzelli BG, Churchill AC, Gibson DM (2007) Serinocyclins A and B, cyclic heptapeptides from Metarhizium anisopliae. J Nat Prod 70:1919–1924CrossRefPubMedGoogle Scholar
  36. Kroiss J, Kaltenpoth M, Schneider B, Schwinger MG, Hertweck C, Maddula RK, Strohm E, Svatos A (2010) Symbiotic Streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat Chem Biol 6: 261–263Google Scholar
  37. Lang G, Kalvelage T, Peters A, Wiese J, Imhoff JF (2008) Linear and cyclic peptides from the entomopathogenic bacterium Xenorhabdus nematophilus. J Nat Prod 71:1074–1077CrossRefPubMedGoogle Scholar
  38. Lee SY, Kinoshita H, Ihara F, Igarashi Y, Nihira T (2008) Identification of novel derivative of helvolic acid from Metarhizium anisopliae grown in medium with insect component. J Biosci Bioeng 105:476–480CrossRefPubMedGoogle Scholar
  39. Li J, Chen G, Webster JM, Czyzewska E (1995a) Antimicrobial metabolites from a bacterial symbiont. J Nat Prod 58:1081–1086CrossRefPubMedGoogle Scholar
  40. Li JX, Chen GH, Wu HM, Webster JM (1995b) Identification of two pigments and a hydroxystilbene antibiotic from Photorhabdus luminescens. Appl Environ Microbiol 61:4329–4333PubMedGoogle Scholar
  41. Li J, Hu K, Webster JM (1998) Antibiotics from Xenorhabdus spp. and Photorhabdus spp. (Enterobacteriaceae). Chem Hereocycl Compd 34:1331–1339CrossRefGoogle Scholar
  42. Matsui T, Tokuda G, Shinzato N (2009) Termites as functional gene resources. Recent Pat Biotechnol 3:10–18CrossRefPubMedGoogle Scholar
  43. McInerney BV, Gregson RP, Lacey MJ, Akhurst RJ, Lyons GR, Rhodes SH, Smith DR, Engelhardt LM, White AH (1991a) Biologically active metabolites from Xenorhabdus spp., Part 1. Dithiolopyrrolone derivatives with antibiotic activity. J Nat Prod 54:774–784CrossRefPubMedGoogle Scholar
  44. McInerney BV, Taylor WC, Lacey MJ, Akhurst RJ, Gregson RP (1991b) Biologically active metabolites from Xenorhabdus spp., Part 2. Benzopyran-1-one derivatives with gastroprotective activity. J Nat Prod 54:785–795CrossRefPubMedGoogle Scholar
  45. Mihara K, Tanabe T, Yamakawa Y, Funahashi T, Nakao H, Narimatsu S, Yamamoto S (2004) Identification and transcriptional organization of a gene cluster involved in biosynthesis and transport of acinetobactin, a siderophore produced by Acinetobacter baumannii ATCC 19606(T). Microbiology 150:2587–2597CrossRefPubMedGoogle Scholar
  46. Mylonakis E (2008) Galleria mellonella and the study of fungal pathogenesis: making the case for another genetically tractable model host. Mycopathologia 165:1–3CrossRefPubMedGoogle Scholar
  47. Mylonakis E, Casadevall A, Ausubel FM (2007) Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PLoS Pathog 3:e101CrossRefPubMedGoogle Scholar
  48. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477CrossRefPubMedGoogle Scholar
  49. Oh DC, Poulsen M, Currie CR, Clardy J (2009a) Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nat Chem Biol 5(6):391–393CrossRefPubMedGoogle Scholar
  50. Oh DC, Scott JJ, Currie CR, Clardy J (2009b) Mycangimycin, a polyene peroxide from a mutualist Streptomyces sp. Org Lett 11:633–636CrossRefPubMedGoogle Scholar
  51. Pankewitz F, Hilker M (2008) Polyketides in insects: ecological role of these widespread chemicals and evolutionary aspects of their biogenesis. Biol Rev 83:209–226CrossRefPubMedGoogle Scholar
  52. Paterson RRM (2008) Cordyceps: a traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry 69:1469–1495CrossRefPubMedGoogle Scholar
  53. Piel J (2002) A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc Natl Acad Sci USA 99:14002–14007CrossRefPubMedGoogle Scholar
  54. Piel J (2004) Metabolites from symbiotic bacteria. Nat Prod Rep 21:519–538CrossRefPubMedGoogle Scholar
  55. Piel J (2009) Metabolites from symbiotic bacteria. Nat Prod Rep 26:338–362CrossRefPubMedGoogle Scholar
  56. Reimer D, Luxenburger E, Brachmann AO, Bode HB (2009) A new type of pyrrolidine biosynthesis is involved in the late steps of xenocoumacin production in Xenorhabdus nematophila. Chembiochem 10(12):1997–2001CrossRefPubMedGoogle Scholar
  57. Reverchon S, Rouanet C, Expert D, Nasser W (2002) Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity. J Bacteriol 184:654–665CrossRefPubMedGoogle Scholar
  58. Samson RA, Evans HC, Latge J-P (1988) Atlas of entomopathogenic fungi. Springer, HeidelbergGoogle Scholar
  59. Santos AV, Dillon RJ, Dillon VM, Reynolds SE, Samuels RI (2004) Ocurrence of the antibiotic producing bacterium Burkholderia sp. in colonies of the leaf-cutting ant Atta sexdens rubropilosa. FEMS Microbiol Lett 239:319–323CrossRefPubMedGoogle Scholar
  60. Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J, Currie CR (2008) Bacterial protection of beetle-fungus mutualism. Science 322:63CrossRefPubMedGoogle Scholar
  61. Sieber SA, Marahiel MA (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 105:715–738CrossRefPubMedGoogle Scholar
  62. Singh J, Banerjee N (2008) Transcriptional analysis and functional characterization of a gene pair encoding iron-regulated xenocin and immunity proteins of Xenorhabdus nematophila. J Bacteriol 190:3877–3885CrossRefPubMedGoogle Scholar
  63. Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416CrossRefPubMedGoogle Scholar
  64. Takahashi H, Kumagai T, Kitani K, Mori M, Matoba Y, Sugiyama M (2007) Cloning and characterization of a Streptomyces single module type non-ribosomal peptide synthetase catalyzing a blue pigment synthesis. J Biol Chem 282:9073–9081CrossRefPubMedGoogle Scholar
  65. Thaler JO, Baghdiguian S, Boemare N (1995) Purification and characterization of Xenorhabdicin, a phage tail-like bacteriocin, from the lysogenic strain F1 of Xenorhabdus nematophilus. Appl Environ Microbiol 61:2049–2052PubMedGoogle Scholar
  66. Thongtan J, Saenboonrueng J, Rachtawee P, Isaka M (2006) An antimalarial tetrapeptide from the entomopathogenic fungus Hirsutella sp BCC 1528. J Nat Prod 69:713–714CrossRefPubMedGoogle Scholar
  67. Vallet-Gely I, Lemaitre B, Boccard F (2008) Bacterial strategies to overcome insect defences. Nat Rev Microbiol 6:302–313CrossRefPubMedGoogle Scholar
  68. Van Lanen SG, Shen B (2008) Advances in polyketide synthase structure and function. Curr Opin Drug Discov Devel 11:186–195PubMedGoogle Scholar
  69. Vilcinskas A (2009) Lepidopterans as model mini-hosts for human pathogens and as a resource for peptide antibiotics. In: MR Goldsmith, F Marec (eds) Molecular Biology and Genetics of the Lepidoptera, CRC Press, Boca raton, FL, pp 293–305Google Scholar
  70. Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, Acosta C, Cattolico L, Jubin C, Lajus A, Segurens B, Vacherie B, Wincker P, Weissenbach J, Lemaitre B, Medigue C, Boccard F (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol 24:673–679CrossRefPubMedGoogle Scholar
  71. von Nussbaum F, Brands M, Hinzen B, Weigand S, Habich D (2006) Antibacterial natural products in medicinal chemistry-exodus or revival? Angew Chem Int Ed 45:5072–5129CrossRefGoogle Scholar
  72. Waterfield NR, Sanchez-Contreras M, Eleftherianos I, Dowling A, Wilkinson P, Parkhill J, Thomson N, Reynolds SE, Bode HB, Dorus S, ffrench-Constant RH (2008) Rapid Virulence Annotation (RVA): identification of virulence factors using a bacterial genome library and multiple invertebrate hosts. Proc Natl Acad Sci USA 105:15967–15972CrossRefPubMedGoogle Scholar
  73. Weissman KJ (2007) Mutasynthesis - uniting chemistry and genetics for drug discovery. Trends Biotechnol 25:139–142CrossRefPubMedGoogle Scholar
  74. Weist S, Süssmuth RD (2005) Mutational biosynthesis-a tool for the generation of structural diversity in the biosynthesis of antibiotics. Appl Microbiol Biotechnol 68:141–150CrossRefPubMedGoogle Scholar
  75. Xu Y, Orozco R, Kithsiri Wijeratne EM, Espinosa-Artiles P, Leslie Gunatilaka AA, Patricia SS, Molnar I (2009a) Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genet Biol 46:353–364CrossRefPubMedGoogle Scholar
  76. Xu Y, Orozco R, Wijeratne EM, Gunatilaka AA, Stock SP, Molnar I (2008) Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana. Chem Biol 15:898–907CrossRefPubMedGoogle Scholar
  77. Xu Y, Wijeratne EM, Espinosa-Artiles P, Gunatilaka AA, Molnar I (2009b) Combinatorial mutasynthesis of scrambled beauvericins, cyclooligomer depsipeptide cell migration inhibitors from Beauveria bassiana. Chembiochem 10:345–354CrossRefPubMedGoogle Scholar
  78. Xu Y, Zhan J, Wijeratne EM, Burns AM, Gunatilaka AA, Molnar I (2007) Cytotoxic and Antihaptotactic beauvericin analogues from precursor-directed biosynthesis with the insect pathogen Beauveria bassiana ATCC 7159. J Nat Prod 70:1467–1471CrossRefPubMedGoogle Scholar
  79. Zhou Y, Choi YL, Sun M, Yu ZN (2008) Novel roles of Bacillus thuringiensis to control plant diseases. Appl Microbiol Biotechnol 80:563–572CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Molecular BiotechnologyInstitute for Molecular Bio Science, Goethe University FrankfurtFrankfurt am MainGermany

Personalised recommendations