Spatial Correlation from the SPIV Database of the WALLTURB Experiment

  • Jean-Marc Foucaut
  • Sebastien Coudert
  • Michel Stanislas
  • Joel Delville
  • Murat Tutkun
  • William K. George
Part of the ERCOFTAC Series book series (ERCO, volume 14)

Abstract

An original experiment has been performed in the frame of the WALLTURB EC project. In this experiment a specific set-up of SPIV allows to compute the full 3D tensor of velocity spatial correlation by using the homogeneity of the flow. The two-point correlations are tools to study the coherence of a flow. Stanislas et al. (C. R. Acad. Sci. Paris 2b 327:55–61, 1999) and Kahler (Exp. Fluids 36:114–130, 2004) showed that double spatial correlations, computed from Particle Image Velocimetry (PIV) fields, allow a better understanding of the turbulent flow organization.

Keywords

Particle Image Velocimetry Turbulent Boundary Layer Particle Image Velocimetry System Stereoscopic Particle Image Velocimetry Streamwise Velocity Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to acknowledge F. Benyoucef and D. Krolak who did a significant contribution to the development of the correlation computation software. This work has been performed under the WALLTURB project. WALLTURB (A European synergy for the assessment of wall turbulence) is funded by the CEC under the 6th framework program (CONTRACT No: AST4-CT-2005-516008).

References

  1. 1.
    Adrian, R.J., Meinhart, C.D., Tomkins, C.D.: Vortex organisation in the outer region of the turbulent boundary layer. J. Fluid Mech. 422(1), 1–54 (2000) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Carlier, J., Stanislas, M.: Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. J. Fluid Mech. 535, 143–188 (2005) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Coudert, S., Schon, J.P.: Back projection algorithm with misalignment corrections for 2D3C stereoscopic PIV. Meas. Sci. Technol. 12, 1371–1381 (2001) CrossRefGoogle Scholar
  4. 4.
    Del Alamo, J.C., Jimenez, J., Zandonade, P., Moser, R.D.: Particle imaging techniques for experimental fluid mechanics. J. Fluid Mech. 561, 329–358 (2006) MATHCrossRefGoogle Scholar
  5. 5.
    Delville, J., Braud, P., Coudert, S., Foucaut, J.-M., Fourment, C., George, W.K., Johansson, P.B.V., Kostas, J., Mehdi, F., Royer, A., Stanislas, M., Tutkun, M.: The WALLTURB joined experiment to assess the large scale structures in a high Reynolds number turbulent boundary layer. In: Stanislas, M., Jimenez, J., Marusic, I. (eds.) Progress in Wall Turbulence: Understanding and Modeling. Proceedings of the WALLTURB International Workshop Held in Lille, France, April 21–23, 2009. ERCOFTAC Series, vol. 14. Springer, Dordrecht (2011) Google Scholar
  6. 6.
    Favre, A., Faviglio, J., Dumas, R.: Space–time double correlations and spectra in a turbulent boundary layer. J. Fluid Mech. 2, 313–342 (1957) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Favre, A., Faviglio, J., Dumas, R.: Further space–time correlations of velocity in a turbulent boundary layer. J. Fluid Mech. 3, 344–356 (1958) CrossRefGoogle Scholar
  8. 8.
    Ganapathisubramani, B., Hutchins, N., Hambleton, W.T., Longmire, E.K., Marusic, I.: Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations. J. Fluid Mech. 524, 57–80 (2006) CrossRefGoogle Scholar
  9. 9.
    Ganapathisubramani, B., Longmire, E.K., Marusic, I.: Experimental investigation of vortex properties in a turbulent boundary layer. Phys. Fluids 18, 055105 (2006) CrossRefGoogle Scholar
  10. 10.
    Hambleton, W.T., Hutchins, N., Marusic, I.: Simultaneous orthogonalplane particle image velocimetry measurements in a turbulent boundary layer. J. Fluid Mech. 560, 53–64 (2006) MATHCrossRefGoogle Scholar
  11. 11.
    Kahler, C.J.: Investigation of the spatio-temporal flow structure in the buffer region of a turbulent boundary layer by means of multiplane stereo PIV. Exp. Fluids 36, 114–130 (2004) CrossRefGoogle Scholar
  12. 12.
    Kahler, C.J., Kompenhans, J.: Fundamentals of multiple plane stereo PIV. Exp. Fluids 29(Suppl.), S70–S77 (2000) Google Scholar
  13. 13.
    Soloff, S., Adrian, R., Liu, Z.C.: Distortion compensation for generalized stereoscopic particle image velocimetry. Meas. Sci. Technol. 8, 1441–1454 (1997) CrossRefGoogle Scholar
  14. 14.
    Stanislas, M., Carlier, J., Foucaut, J.M., Dupont, P.: Double spatial correlations, a new experimental insight into wall turbulence. C. R. Acad. Sci. Paris 2b 327, 55–61 (1999) MATHGoogle Scholar
  15. 15.
    Stanislas, M., Perret, L., Foucaut, J.M.: Vortical structures in the turbulent boundary layer: a possible route to a universal representation. J. Fluid Mech. 602, 327–382 (2005) Google Scholar
  16. 16.
    Willert, C.: Stereoscopic digital particle image velocimetry for applications in wind tunnel flows. Meas. Sci. Technol. 8, 1465–1479 (1997) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jean-Marc Foucaut
    • 1
  • Sebastien Coudert
    • 1
  • Michel Stanislas
    • 1
  • Joel Delville
    • 2
  • Murat Tutkun
    • 3
  • William K. George
    • 4
  1. 1.LML UMR CNRS 8107Villeneuve d’AscqFrance
  2. 2.LEA UMR CNRS 6609PoitiersFrance
  3. 3.FFIKjellerNorway
  4. 4.Chalmers University of TechnologyGothenburgSweden

Personalised recommendations