The Human Footprint as a Conservation Planning Tool

  • Stephen C. TrombulakEmail author
  • Robert F. Baldwin
  • Gillian Woolmer


Conservation planning is aided by an ability to view spatially explicit patterns of landscape transformation that are both multivariate and mapped with a fine-scale resolution. The Human Footprint is one such measure of transformation, integrating information on human access, settlement, transformation of land use/land cover, and development of energy infrastructure. We used this methodology to develop a fine-scale (90-m resolution) map of the degree of human transformation of the Northern Appalachian/Acadian ecoregion as well as develop models to project changes in key dynamic aspects of this map – roads, human population density, and land cover change due to amenities development – to identify in a comprehensive and systematic fashion locations that are currently highly transformed or vulnerable to transformation in the future. Although more than 90% of this ecoregion exhibits less than half of the maximum amount of transformation seen anywhere here, several regions, particular around urban areas and within major valleys, are already highly transformed. In addition, under reasonable scenarios of future population growth and development, threat levels for several areas currently with low levels of transformation are projected to increase, providing conservation planners a way to prioritize current conservation action to proactively achieve conservation goals for the future.


GIS Human Footprint Human influence Northern Appalachian/Acadian ecoregion Transformation 


  1. Alroy, J. (2001). A multispecies overkill simulation of the end-Pleistocene megafaunal mass extinction. Science, 292, 1893–1896.CrossRefGoogle Scholar
  2. Anderson, M. G., Vickery, B., Gorman, M., Gratton, L., Morrison, M., Maillet, J., et al. (2006). The Northern Appalachian/Acadian ecoregion: Ecoregional assessment, conservation status and resource CD. The nature conservancy, eastern conservation science and the nature conservancy of Canada: Atlantic and Quebec regions. Retrieved January 31, 2010, from
  3. Baldwin, R. F., Ray, J. C., Trombulak, S. C., & Woolmer, G. (2007a). Relationship between spatial distribution of urban sprawl and species imperilment: Response to Brown and Leband. Conservation Biology, 21, 546–548.CrossRefGoogle Scholar
  4. Baldwin, R. F., Trombulak, S. C., Anderson, M. G., & Woolmer, G. (2007b). Projecting transition probabilities for regular public roads at the ecoregion scale: A Northern Appalachian/Acadian case study. Landscape and Urban Planning, 80, 404–411.CrossRefGoogle Scholar
  5. Baldwin, R. F., Bell, K. P., & Sanderson, E. W. (2007c). Spatial tools for conserving pool-breeding amphibians: An application of the landscape species approach. In A. J. K. Calhoun & P. G. deMaynadier (Eds.), Science and conservation of vernal pools in Northeastern North America (pp. 281–297). Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  6. Baldwin, R. F., Trombulak, S. C., & Baldwin, E. D. (2009). Assessing risk of large-scale habitat conversion in lightly settled landscapes. Landscape and Urban Planning, 91, 219–225.CrossRefGoogle Scholar
  7. Bartlett, J. G., Mageean, D. M., & O’Connor, R. J. (2000). Residential expansion as a continental threat to U.S. coastal ecosystems. Population and Environment, 21, 429–446.CrossRefGoogle Scholar
  8. Bell, K. P., & Irwin, E. G. (2002). Spatially explicit micro-level modelling of land use change at the rural-urban interface. Agricultural Economics, 27, 217–232.CrossRefGoogle Scholar
  9. Boucher, T., Hoekstra, J., Jennings, M. & Ervin, J. (2006). Global estimates of effective conservation. (Paper presented at the 9th annual conference of the Society for Conservation GIS, San Jose, CA).Google Scholar
  10. Carpenter, S. R. (2002). Ecological futures: Building and ecology of the long now. Ecology, 83, 2069–2083.Google Scholar
  11. Carroll, C. (2005). Carnivore restoration in the northeastern U.S. and southeastern Canada: A regional-scale analysis of habitat and population viability for wolf, lynx, and marten – Report 2: lynx and marten viability analysis (Wildlands Project Special Paper No. 6). Richmond, VT: Wildlands Project. Retrieved December 15, 2009, from Klamath Center for Conservation Research Web site:
  12. Carroll, C. (2007). Interacting effects of climate change, landscape conversion, and harvest on carnivore populations at the range margin: Marten and lynx in the Northern Appalachians. Conservation Biology, 21, 1092–1104.CrossRefGoogle Scholar
  13. CIESIN (Center for International Earth Science Information Network). (n. d.). The last of the wild. Retrieved February 3, 2010, from CIESIN Web site:
  14. Davis, M. B., Spear, R. W., & Shane, L. C. K. (1980). Holocene climate of New England. Quaternary Research, 14, 240–250.CrossRefGoogle Scholar
  15. Dobson, A. P., Rodriguez, J. P., Roberts, W. M., & Wilcove, D. S. (1997). Geographic distribution of endangered species in the United States. Science, 275, 550–553.CrossRefGoogle Scholar
  16. Driscoll, C. T., Lawrence, G. B., Bulger, A. J., Butler, T. J., Cronan, C. S., Eagar, C., et al. (2001). Acidic deposition in the Northeastern United States: Sources and inputs, ecosystem effects, and management strategies. BioScience, 51, 180–198.CrossRefGoogle Scholar
  17. Driscoll, C. T., Han, Y. -J., Chen, C. Y., Evers, D. C., Lambert, K. F., Holsen, T. M., et al. (2007). Mercury contamination in forest and freshwater ecosystems in the northeastern United States. BioScience, 57, 17–28.CrossRefGoogle Scholar
  18. Evers, D. C., Han, Y. -J., Driscoll, C. T., Kamman, N. C., Goodale, M. W., Lambert, K. F., et al. (2007). Biological mercury hotspots in the Northeastern United States and Southeastern Canada. BioScience, 57, 29–43.CrossRefGoogle Scholar
  19. Forman, R. T. T., & Alexander, L. E. (1998). Roads and their major ecological effects. Annual Review of Ecology and Systematics, 29, 207–231.CrossRefGoogle Scholar
  20. Foster, D. R., & Aber, J. D. (2004). Forests in time: The environmental consequences of 1,000 years of change in New England. New Haven, CT: Yale University Press.Google Scholar
  21. Foster, D. R., Motzkin, G., Bernardos, D., & Cardoza, J. (2002). Wildlife dynamics in the changing New England landscape. Journal of Biogeography, 29, 1337–1357.CrossRefGoogle Scholar
  22. Frumhoff, P. C., McCarthy, J. J., Melillo, J. M., Moser, S. C., & Wuebbles, D. J. (2007). Confronting climate change in the U.S. Northeast: Science, impacts, and solutions. Cambridge, MA: Union of Concerned Scientists. Retrieved February 3, 2010, from
  23. Gustafson, E. J., Hammer, R. B., Radeloff, V. C., & Potts, R. S. (2005). The relationship between environmental amenities and changing human settlement patterns between 1980 and 2000 in the Midwestern USA. Landscape Ecology, 20, 773–789.CrossRefGoogle Scholar
  24. Haberl, H., Erb, K. H., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C., et al. (2007). Quantifying and mapping the human appropriation of net primary production in earth’s ­terrestrial ecosystems. Proceedings of the National Academy of Sciences, 104, 12942–12947.CrossRefGoogle Scholar
  25. Hagan, J. M., Irland, L. C., & Whitman, A. A. (2005). Changing timberland ownership in the Northern Forest and implications for biodiversity (No. MCCS-FCP-2005-1). Brunswick, ME: Manomet Center for Conservation Sciences.Google Scholar
  26. Hunter, M. L., & Gibbs, J. P. (2007). Fundamentals of conservation biology (3rd ed.). Oxford, UK: Blackwell.Google Scholar
  27. Huston, M. A. (2005). The three phases of land-use change: Implications for biodiversity. Ecological Applications, 15, 1864–1878.CrossRefGoogle Scholar
  28. Jones, D. A., Hansen, A. J., Bly, Doherty, K., Verschuyl, J. P., Paugh, J. I., et al. (2009). Monitoring land use and cover around parks: A conceptual approach. Remote Sensing of Environment, 113, 1346–1356.CrossRefGoogle Scholar
  29. Laliberte, A. S., & Ripple, W. J. (2004). Range contractions of North American carnivores and ungulates. BioScience, 54, 123–138.CrossRefGoogle Scholar
  30. Leu, M., Hanser, S. E., & Knick, S. T. (2008). The human footprint in the West: A large-scale analysis of anthropogenic impacts. Ecological Applications, 18, 1119–1139.CrossRefGoogle Scholar
  31. Model Forest of Newfoundland and Labrador. (n. d.) Model Forest of Newfoundland and Labrador. Retrieved February 3, 2010, from
  32. National Geographic Society. (n. d.). Africa megaflyover: Charting the last wild places on Earth. Retrieved February 3, 2010, from
  33. Newmark, W. D. (1995). Extinction of mammal populations in Western North American National Parks. Conservation Biology, 9, 512–526.CrossRefGoogle Scholar
  34. Noss, R. F., Carroll, C., Vance-Borland, K., & Wuerthner, G. (2002). A multicriteria assessment of the irreplaceability and vulnerability of sites in the Greater Yellowstone Ecosystem. Conservation Biology, 16, 895–908.CrossRefGoogle Scholar
  35. Parks, S. A., & Harcourt, A. H. (2002). Reserve size, local human density, and mammalian extinctions in U.S. protected areas. Conservation Biology, 16, 800–808.CrossRefGoogle Scholar
  36. Sanderson, E. W., Jaiteh, M., Levy, M. A., Redford, K. H., Wannebo, A. V., & Woolmer, G. (2002). The human footprint and the last of the wild. BioScience, 52, 891–904.CrossRefGoogle Scholar
  37. Sanderson, E., Forrest, J., Loucks, C., Ginsberg, J., Dinerstein, E., Seidensticker, J., et al. (2006). Setting priorities for the conservation and recovery of wild tigers: 2005–2015. The technical assessment. New York and Washington, DC: Wildlife Conservation Society, World Wildlife Fund, and Save the Tiger Fund. Retrieved February 3, 2010, from
  38. Saunders, S. C., Mislivets, M. R., Chen, J., & Cleland, D. T. (2002). Effects of roads on landscape structure within nested ecological units of the Northern Great Lakes Region, USA. Biological Conservation, 103, 209–225.CrossRefGoogle Scholar
  39. Shafer, C. L. (1995). Values and shortcomings of small reserves. BioScience, 45, 80–88.CrossRefGoogle Scholar
  40. Theobald, D. M. (2003). Targeting conservation action through assessment of protection and exurban threats. Conservation Biology, 17, 1624–1637.CrossRefGoogle Scholar
  41. Trombulak, S. C., & Frissell, C. A. (2000). Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology, 14, 18–30.CrossRefGoogle Scholar
  42. Vitousek, P. M. (1994). Beyond global warming: Ecology and global change. Ecology, 75, 1861–1876.CrossRefGoogle Scholar
  43. Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of earth’s ecosystems. Science, 277, 494–499.CrossRefGoogle Scholar
  44. Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A., & Losos, E. (1998). Quantifying threats to imperiled species in the United States. Bioscience, 48, 607–615.CrossRefGoogle Scholar
  45. Woodford, J. E., & Meyer, M. W. (2003). Impact of lakeshore development on green frog abundance. Biological Conservation, 110, 277–284.CrossRefGoogle Scholar
  46. Woolmer, G., Trombulak, S. C., Ray, J. C., Doran, P. J., Anderson, M. G., Baldwin, R. F., et al. (2008). Rescaling the human footprint: A tool for conservation planning at an ecoregional scale. Landscape and Urban Planning, 87, 42–53.CrossRefGoogle Scholar
  47. WRI (World Resources Institute) (2000). City lights of the world: Based on NOAA-National Geophysical Data Center, Stable Lights and Radiance Calibrated Lights of the World (1998). Accessed on January 3, 2010, from

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Stephen C. Trombulak
    • 1
    Email author
  • Robert F. Baldwin
    • 2
  • Gillian Woolmer
    • 3
  1. 1.Department of BiologyMiddlebury CollegeMiddleburyUSA
  2. 2.Department of Forestry and Natural ResourcesClemson UniversityClemsonUSA
  3. 3.WCS CanadaTorontoCanada

Personalised recommendations