The Vent and Seep Biota pp 169-254

Part of the Topics in Geobiology book series (TGBI, volume 33)

Gastropods from Recent Hot Vents and Cold Seeps: Systematics, Diversity and Life Strategies

  • Takenori Sasaki
  • Anders Warén
  • Yasunori Kano
  • Takashi Okutani
  • Katsunori Fujikura
Chapter

Abstract

Since the first discovery of hydrothermal vents at the Galapagos Spreading Center in 1977, gastropods have gained considerable attention as a major constituent of the chemosynthesis-based biological communities, especially the colonies of large species like Alviniconcha, Ifremeria and Lepetodrilus, or morphologically strange ones like the scaly-foot snail. Various types of symbiotic relations to bacteria have broadened the interest in them. During more than 30 years numerous vent and seep biotopes have been found mainly in temperate seas, but recently hydrothermal vents off Jan Mayen in the North Atlantic at 80°N and cold seeps off Norway between 67°N and 70°N (Haakon Mosby Mud Volcano) with chemosynthesis-based fauna (see Warén and Bouchet 2001; Desbruyères et al. 2006: 516–517 for map). Biology of these vent/seep organisms is still in an early state of exploration; much of what is known is summarized in the monographs by Van Dover (2000) and Desbruyères et al. (2006). Vent/seep taxa have also been a major target in research on higher phylogeny and systematics of gastropods. Several new families were established in the 1980s, based on seemingly “great differences” in morphology.

References

  1. Aktipis SW, Giribet G, Lindberg DR et al (2008) Gastropoda: An overview and analysis. In: Ponder WF, Lindberg DR (eds) Phylogeny and evolution of the mollusca. University of California Press, Berkeley, CAGoogle Scholar
  2. Bates AE (2007a) Feeding strategy, morphological specialisation and presence of bacterial episymbionts in lepetodrilid gastropods from hydrothermal vents. Mar Ecol Prog Ser 347:87–99Google Scholar
  3. Bates AE (2007b) Persistence, morphology, and nutritional state of a gastropod hosted bacterial symbiosis in different levels of hydrothermal vent flux. Mar Biol 152:557–568Google Scholar
  4. Batten RL (1984) Shell structure of the Galapagos rift limpet Neomphalus fretterae McLean, 1981, with notes on muscle scars and insertions. Am Mus Novitates 2276:1–13Google Scholar
  5. Beck LA (1991) Olgaconcha tufari n. gen. et n. sp. – an new mesogastropod (Gastropoda: Prosobranchia) from hydrothermal vents in the Manus Back-Arc Basin (Bismarck Sea, Papua New Guinea). Ann Naturhist Mus Wien B92:277–286Google Scholar
  6. Beck LA (1992a) Symmetromphalus hageni sp. n., a new neomphalid gastropod (Prosobranchia: Neomphalidae) from hydrothermal vents at the Manus Back-Arc Basin (Bismarck Sea, Papua New Guinea). Ann Naturhist Mus Wien B93:243–257Google Scholar
  7. Beck LA (1992b) Two new neritacean limpets (Gastropoda: Prosobranchia: Neritacea: Phenacolepadidae) from active hydrothermal vents at Hydrothermal Field 1 “Wienerwald” in the Manus Back Arc Basin (Bismarck Sea, Papua New Guinea). Ann Naturhist Mus Wien B93:259–275Google Scholar
  8. Beck LA (1993) Morphological and anatomical studies on a new lepetodrilacean limpet (Gastropoda, Prosobranchia) from hydrothermal vents at the Manus Back-Arc Basin (Bismarck Sea, Papua New Ginea). Ann Naturhist Mus Wien B94(95):167–179Google Scholar
  9. Beck LA (1996) Morphology and anatomy of new species of neolepetopsid, acmaeid, fissurellid and pyropeltid limpets from Edison Seamount off Lihir Islands (West Pacific). Arch Mollusk 125:87–103Google Scholar
  10. Beck LA (2002) Hirtopelta tufari sp. n., a new gastropod species from hot vents at the East Pacific Rise (21degree S) harbouring endocytosymbiotic bacteria in its gill: (Gastropoda: Rhipidoglossa: Peltospiridae). Arch Mollusk 130:249–257Google Scholar
  11. Bergquist DC, Eckner JT, Urcuyo IA et al (2007) Using stable isotopes and quantitative community characteristics to determine a local hydrothermal vent food web. Mar Ecol Prog Ser 330:49–65Google Scholar
  12. Bouchet P, Warén A (1991) Ifremeria nautilei, a new gastropod from hydrothermal vents, probably associated with symbiotic bacteria. C R Acad Sci III 312:495–501Google Scholar
  13. Bouchet P, Warén A (1993) Revision of the Northeast Atlantic bathyal and abyssal Mesogastropoda. Boll Malac Suppl 3:580–840Google Scholar
  14. Bouchet P, Fryda J, Hausdorf B et al (2005) Working classification of the Gastropoda. In: Bouchet P, Rocroi JP (eds) Classification and nomenclator of gastropod families. Malacologia 47:240–283Google Scholar
  15. Braby CE, Rouse GW, Johnson SB et al (2007) Temporal variation among Osedax boneworms and related megafauna on whale-falls in Monterey Bay, California. Deep Sea Res Pt I 54:1773–1791Google Scholar
  16. Campbell KA, Peterson DE, Alfaro AC (2008) Two new species of Retiskenea? (Gastropoda: Neomphalidae) from lower Cretaceous hydrocarbon-seep carbonates of northern California. J Paleontol 82:140–153Google Scholar
  17. Clarke AH (1989) New mollusks from under-sea oil seep sites off Louisiana. Malac Data Net 2:122–134Google Scholar
  18. Colgan DJ, Ponder WF, Beacham E, Macaranas JM (2007) Molecular phylogenetics of Caenogastropoda (Gastropoda: Mollusca). Mol. Phyloget Evol 42:717–737Google Scholar
  19. Craddock C, Lutz RA, Vrijenhoek RC (1997) Patterns of dispersal and larval development of archaeogastropod limpets at hydrothermal vents in the eastern Pacific. J Exp Mar Biol Ecol 210:37–51Google Scholar
  20. Cruz R, Farina M (2005) Mineralization of major lateral teeth in the radula of a deep-sea hydrothermal vent limpet (Gastropoda: Neolepetopsidae). Mar Biol 147:163–168Google Scholar
  21. Dattagupta S, Martin J, Liao SM et al (2007) Deep-sea hydrocarbon seep gastropod Bathynerita naticoidea responds to cues from the habitat-providing mussel Bathymodiolus childressi. Mar Ecol 28:193–198Google Scholar
  22. Declerck C (1995) The evolution of suspension feeding in gastropods. Biol Rev 70:549–569Google Scholar
  23. Denis F, Jollivet D, Moraga D (1993) Genetic separation of two allopatric populations of hydrothermal snails Alviniconcha spp. (Gastropoda) from two South Western Pacific Back-arc Basins. Biochem Syst Ecol 21:431–440Google Scholar
  24. Desbruyères D, Segonzac M, Bright M (eds) (2006) Handbook of deep-sea hydrothermal vent fauna. Denisia 18:1–544Google Scholar
  25. Distel DL, Baco AR, Chuang E et al (2000) Do mussels take wooden steps to deep-sea vents? Nature 403:725–726Google Scholar
  26. Fraussen K, Sellanes J (2007) Three new buccinid species (Gastropoda: Neogastropoda) from Chilean deep-water, including one from a methane seep. Veliger 50(2):97–106Google Scholar
  27. Fretter V (1988) New archaeogastropod limpets from hydrothermal vents, superfamily Lepetodrilacea. II. Anatomy. Philos T Roy Soc B319:33–82Google Scholar
  28. Fretter V (1989) The anatomy of some new archaeogastropod limpets (Superfamily Peltospiracea) from hydrothermal vents. J Zool 218:123–169Google Scholar
  29. Fretter V (1990) The anatomy of some new archaeogastropod limpets (Order Patellogastropoda, Suborder Lepetopsina) from hydrothermal vents. J Zool 222:529–555Google Scholar
  30. Fretter V, Graham A, McLean JH (1981) The anatomy of the Galapagos Rift limpet, Neomphalus fretterae. Malacologia 21:337–361Google Scholar
  31. Fuchigami T, Sasaki T (2005) The shell structure of the Recent Patellogastropoda (Mollusca: Gastropoda). Paleontol Res 9:143–168Google Scholar
  32. Fujikura K, Sasaki T, Yamanaka T et al (2009) Turrid whelk, Phymorhynchus buccinoides feeds on Bathymodiolus mussels at a seep site in Sagami Bay, Japan. Plankton Benthos Res 4:23–30Google Scholar
  33. Geiger DL, Thacker CE (2006) Molecular phylogeny of basal gastropods (Vetigastropoda) show stochastic colonization of chemosynthetic habitats at least from the mid Triassic. Cah Biol Mar 47:343–346Google Scholar
  34. Geiger DL, Nützel A, Sasaki T (2008) Vetigastropoda. In: Lindberg DR, Ponder WF (eds) Phylogeny and evolution of the Mollusca. University of California Press, Berkeley, CAGoogle Scholar
  35. Gofas S (2005) Geographical differentiation in Clelandella (Gastropoda: Trochidae) in the Northeastern Atlantic. J Moll Stud 71:133–144Google Scholar
  36. Goffredi SK, Warén A, Orphan VJ et al (2004) Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean. Appl Environ Microb 70:3082–3090Google Scholar
  37. Gustafson RG, Lutz RA (1994) Molluscan life history traits at deep-sea hydrothermal vents and cold methane/sulfide seeps. In: Young CM, Eckelbarger KJ (eds) Reproduction, larval biology, and recruitment of the deep-sea benthos. Columbia University Press, New YorkGoogle Scholar
  38. Harasewych MG, Kantor YI (2002) Buccinum thermophilum (Gastropoda: Neogastropoda: Buccinidae), a new species from the Endeavour vent field of the Juan de Fuca Ridge. J Moll Stud 68:39–44Google Scholar
  39. Harasewych MG, McArthur AG (2000) A molecular phylogeny of the Patellogastropoda (Mollusca: Gastropoda). Mar Biol 137:183–194Google Scholar
  40. Hasegawa K (1997) Sunken wood-associated gastropods collected from Suruga Bay, Pacific side of the central Honshu, Japan, with descriptions of 12 new species. Nat Sci Mus Monogr 12:59–123Google Scholar
  41. Haszprunar G (1989a) New slit-limpets (Scissurellacea and Fissurellacea) from hydrothermal vents. Part 2. Anatomy and relationships. Contrib Sci Nat Hist Mus Los Angeles Co 408:1–17Google Scholar
  42. Haszprunar G (1989b) The anatomy of Melanodrymia aurantiaca Hickman, a coiled archaeogastropod from the East Pacific hydrothermal vents (Mollusca, Gastropoda). Acta Zool 70:175–186Google Scholar
  43. Healy JM (1990) Taxonomic affinities of the deep-sea genus Provanna (Caenogastropoda): new evidence from sperm ultrastructure. J Moll Stud 56:119–122Google Scholar
  44. Heß M, Beck F, Gensler H et al (2008) Microanatomy, shell structure and molecular phylogeny of Leptogyra, Xyleptogyra and Leptogyropsis (Gastropoda: Neomphalida: Melanodrymiidae) from sunken wood. J Moll Stud 74:381–401Google Scholar
  45. Hickman CS (1984) A new archaeogastropod (Rhipidoglossa, Trochacea) from hydrothermal vents on the East Pacific Rise. Zool Scr 13:19–25Google Scholar
  46. Hickman CS, McLean JH (1990) Systematic revision and suprageneric classification of trochacean gastropods. Nat Hist Mus Los Angeles County Sci Ser 35:1–169Google Scholar
  47. Hodgson AN, Healy JM, Tunnicliffe V (1997) Spermatogenesis and sperm structure of the hydrothermal vent prosobranch gastropod Lepetodrilus fucensis (Lepetodrilidae, Mollusca). Invertebr Reprod Dev 31:87–97Google Scholar
  48. Hodgson AN, Eckelbarger KJ, Young CM (1998) Sperm morphology and spermiogenesis in the methane-seep mollusc Bathynerita naticoidea (Gastropoda: Neritacea) from the Louisiana slope. Invertebr Biol 117:199–207Google Scholar
  49. Hodgson AN, Eckelbarger KJ, Young CM (2009) Sperm ultrasptructure and spermatogenesis in the hydrothermal vent gastropod Rhynchopelta concentrica (Peltospiridae). J Moll Stud 75:159–165Google Scholar
  50. Houart R (2003) Description of three new species of Trophon s. 1. Montfort, 1810 (Gastropoda: Muricidae) from Chile. Novapex 4:101–110Google Scholar
  51. Houart R, Sellanes J (2006) New data on recently described Chilean trophonines (Gastropoda: Muricidae), description of a new species and notes of their occurrence at cold seep site. Zootaxa 1222:53–68Google Scholar
  52. Houbrick RS (1979) Classification and systematic relationships of the Abyssochrysidae, a relict family of bathyal snails (Prosobranchia: Gastropoda. Smithsonian Contrib Zool 290:1–21Google Scholar
  53. Hunt S (1992) Structure and composition of the shell of the archaeogastropod limpet Lepetodrillus elevatus elevatus (McLean, 1988). Malacologia 34:129–141Google Scholar
  54. Israelsson O (1998) The anatomy of Pachydermia laevis (Archaeogastropoda: ‘Peltospiridae’). J Moll Stud 64:93–109Google Scholar
  55. Jablonski D, Lutz RA (1983) Larval ecology of marine benthic invertebrates: paleobiological implications. Biol Rev 58:21–89Google Scholar
  56. Jenkins RG, Kaim A, Hikida Y (2007a) Antiquity of the substrate choice among acmaeid limpets from Late Cretaceous chemosynthesis-based communities. Acta Palaeontol Pol 52:369–373Google Scholar
  57. Jenkins RG, Kaim A, Hikida Y et al (2007b) Methane-flux-dependent lateral faunal changes in a Late Cretaceous chemosymbiotic assemblage from the Nakagawa area of Hokkaido, Japan. Geobiology 5:127–139Google Scholar
  58. Johnson SB, Young CR, Jones WJ et al (2006) Migration, isolation, and speciation of hydrothermal vent limpets (Gastropoda; Lepetodrilidae) across the Blanco Transform Fault. Biol Bull 210:140–157Google Scholar
  59. Johnson SB, Warén A, Lee RW, Kaim A, Davis A, Kano Y, Strong EE, Vrijenhoek RC. in press. Living fossils: Rubyspira, a new genus of bone-eating snails from the deep-sea. Biol. Bull. Google Scholar
  60. Johnson SB, Warén A, Vrijenhoek RC (2008) DNA barcoding of Lepetodrilus limpets reveals cryptic species. J Shellfish Res 27:43–51Google Scholar
  61. Kaim A (2004) The evolution of conch ontogeny in Mesozoic open sea gastropods. Palaeontol Pol 62:6–183Google Scholar
  62. Kaim A, Jenkins RG, Warén A (2008a) Provannid and provannid-like gastropods from the Late Cretaceous cold seeps of Hokkaido (Japan) and the fossil record of the Provannidae (Gastropoda: Abyssochrysoidea). Zool J Linn Soc 154:421–436Google Scholar
  63. Kaim A, Kobayashi Y, Echizenya H et al (2008b) Chemosynthesis-based associations on Cretaceous plesiosaurid carcasses. Acta Palaeontol Pol 53:97–104Google Scholar
  64. Kano Y (2006) Usefulness of the opercular nucleus for inferring early development in neritimorph gastropods. J Morphol 267:1120–1136Google Scholar
  65. Kano Y (2008) Vetigastropod phylogeny and a new concept of Seguenzioidea: independent evolution of copulatory organs in the deep-sea habitats. Zool Scr 37:1–21Google Scholar
  66. Kano Y, Haga T (2010) Marine ecosystems: Sulfide rich environments. In: Bouchet P, Le Guyader H, Pascal O (eds) The natural history of Santo. Patrimoines Naturels. 69 Muséum National d’Histoire Naturelle, ParisGoogle Scholar
  67. Kano Y, Chiba S, Kase T (2002) Major adaptive radiation in neritopsine gastropods estimated from 28S rRNA sequences and fossil records. P Roy Soc Lond B269:2457–2465Google Scholar
  68. Kano Y, Chikyu E, Warén A (2009) Morphological, ecological and molecular characterization of the enigmatic planispiral snail genus Adeuomphalus (Vetigastropoda: Seguenzioidea). J Moll Stud 75:397–418Google Scholar
  69. Kelly NE, Metaxas A (2007) Influence of habitat on the reproductive biology of the deep-sea hydrothermal vent limpet Lepetodrilus fucensis (Vetigastropoda: Mollusca) from the Northeast Pacific. Mar Biol 151:649–662Google Scholar
  70. Kelly NE, Metaxas A (2008) Population structure of two deep-sea hydrothermal vent gastropods from the Juan de Fuca Ridge, NE Pacific. Mar Biol 153:457–471Google Scholar
  71. Kiel S (2004) Shell structures of selected gastropods from hydrothermal vents and seeps. Malacologia 46:169–183Google Scholar
  72. Kiel S (2006) New records and species of molluscs from Tertiary cold-seep carbonates in Washington State, USA. J Paleontol 80:121–137Google Scholar
  73. Kiel S, Goedert JL (2006) A wood-fall association from late Eocene deep-water sediments of Washington State, USA. Palaios 21:548–556Google Scholar
  74. Kiel S, Goedert JL (2007) New mollusks associated with biogenic substrates in Cenozoic deep-water sediments of Washington State. Acta Palaeontol Pol 52:41–52Google Scholar
  75. Kiel S, Little CTS (2006) Cold-seep mollusks are older than the general marine mollusk fauna. Science 313:1429–1431Google Scholar
  76. Kiel S, Campbell KA, Elder WP et al (2008) Jurassic and Cretaceous gastropods from hydrocarbon seeps in forearc basin and accretionary prism settings, California. Acta Palaeontol Pol 53:679–703Google Scholar
  77. Kojima S, Segawa R, Fujiwara Y et al (2000) Genetic differentiation of populations of a hydrothermal vent-endemic gastropod, Ifremeria nautilei, between the North Fiji Basin and the Manus Basin revealed by nucleotide sequences of mitochondrial DNA. Zool Sci 17:1167–1174Google Scholar
  78. Kojima S, Segawa R, Fijiwara Y et al (2001) Phylogeny of hydrothermal-vent-endemic gastropods Alviniconcha spp. from the western Pacific revealed by mitochondrial DNA sequences. Biol Bull 200:298–304Google Scholar
  79. Kojima S, Fujikura K, Okutani T et al (2004) Phylogenetic relationship of Alviniconcha gastropods from the Indian Ocean to those from the Pacific Ocean (Mollusca: Provannidae) revealed by nucleotide sequences of mitochondrial DNA. Venus 63:65–68Google Scholar
  80. Kunze T, Heß M, Brückner M et al (2008) Skeneimorph gastropods in Neomphalina and Vetigastropoda – A preliminary report. Zoosymposia 1:119–131Google Scholar
  81. Levesque C, Juniper SK, Limen H (2006) Spatial organization of food webs along habitat gradients at deep-sea hydrothermal vents on Axial Volcano, Northeast Pacific. Deep Sea Res Pt I 53:726–739Google Scholar
  82. Levin LA, Bridges TS (1995) Pattern and diversity in reproduction and development. In: McEdward L (ed) Ecology of marine invertebrate larvae. CRC Press, Boca Raton, FLGoogle Scholar
  83. Limén H, Levesque C, Juniper SK (2007) POM in macro-/meiofaunal food webs associated with three flow regimes at deep-sea hydrothermal vents on Axial Volcano, Juan de Fuca Ridge. Mar Biol 153:129–139Google Scholar
  84. Lindberg DR (2008) Patellogastropoda, Neritimorpha, and Cocculinoidea. The low-diversity gastropod clades. In: Ponder WF, Lindberg DR (eds) Phylogeny and Evolution of the Mollusca. University of California Press, Berkeley, CAGoogle Scholar
  85. Lindberg DR, Hedegaard C (1996) A deep water patellogastropod from Oligocene water-logged wood of Washington State, USA (Acmaeoidea: Pectinodonta). J Moll Stud 62:299–314Google Scholar
  86. Little CRS, Cann JR (1999) Late Cretaceous hydrothermal vent communities from the Troodos ophiolite, Cyprus. Geology 27:1027–1030Google Scholar
  87. Lus VJ (1981) New species of Tacita (Prosobranchia, Buccinidae) with wide distribution in the north-western part of the Pacific Ocean. Trudy Instit Okeanol P P Shirshov 115:140–154 (in Russian)Google Scholar
  88. McArthur AG, Tunnicliffe V (1998) Relics and antiquity revisited in the modern vent fauna. In: Mills RA, Harrison K (eds), Modern Ocean floor processes and the geological record. Geol Soc Lond Spec Pub 148:271–291Google Scholar
  89. Marshall BA (1986) Recent and Tertiary Cocculinidae and Pseudococculinidae (Mollusca: Gastropoda) from New Zealand and New South Wales. New Zeal J Zool 12:505–546Google Scholar
  90. Marshall BA (1988) Skeneidae, Vitrinellidae, and Orbitestellidae (Mollusca: Gastropoda) associated with biogenic substrata from bathyal depth off New Zealand and New South Wales. J Nat Hist 22:949–1004Google Scholar
  91. Marshall BA (1995) Callistomatidae (Gastropoda: Trochoidea) from New Caledonia, the Loyalty Islands, and the northern Lord Howe Rise. Mem Mus Nat Hist Natur 167:381–458Google Scholar
  92. Martell KA, Tunnicliffe V, MacDonald IR (2002) Biological features of a buccinid whelk (Gastropoda, Neogastropoda) at the Endeavour ventfields of Juan de Fuca Ridge, Northeast Pacific. J Moll Stud 68:45–53Google Scholar
  93. Martin JW, Haney TA (2005) Decapod crustaceans from hydrothermal vents and cold seeps: a review through 2005. Zool J Linn Soc 145:445–552Google Scholar
  94. Matabos M, Thiébaut E, Le Guen D, Sadosky F, Jollivet D, Bonhomme F (2007) Geographic clines and stepping-stone patterns detected along the East Pacific Rise in the vetigastropod Lepetodrilus elevatus reflect species crypticism. Mar Biol 153:545–563Google Scholar
  95. McArthur AG, Harasewych MG (2003) Molecular systematics of the major lineages of the Gastropoda. In Lydeard EC, Lindberg DR, (eds) Molecular Systematics and Phylogeography of Mollusks. Smithsonian Institution Press, Washington, DCGoogle Scholar
  96. McArthur AG, Koop BF (1999) Partial 28S rDNA sequences and the antiquity of the hydrothermal vent endemic gastropods. Mol Phyloget Evol 13:255–274Google Scholar
  97. McEdward L (ed) (1995) Ecology of Marine invertebrate larvae. CRC Press, Boca Raton, FLGoogle Scholar
  98. McLean JH (1981) The Galapagos Rift limpet Neomphalus: relevance to understanding the evolution of a major Paleozoic-Mesozoic radiation. Malacologia 21:291–336Google Scholar
  99. McLean JH (1988a) New archaeogastropod limpets from hydrothermal vents, superfamily Lepetodrilacea. Part I: Systematic descriptions. Philos T Roy Soc Lond B319:1–32Google Scholar
  100. McLean JH (1988b) Three new limpets of the family Pseudococculinidae from abyssal depths (Mollusca, Archaeogastropoda). Zool Scr 17:155–160Google Scholar
  101. McLean JH (1989a) New archaeogastropod limpets from hydrothermal vents: new family Peltospiridae, new superfamily Peltospiracea. Zool Scr 18:49–66Google Scholar
  102. McLean JH (1989b) New slit-limpets (Scissurellacea and Fissurellacea) from hydrothermal vents. Part 1. Systematic descriptions and comparisons based on shell and radular characters. Contrib Sci Nat Hist Mus Los Angeles County 407:1–29Google Scholar
  103. McLean JH (1990a) A new genus and species of neomphalid limpet from the Mariana vents with a review of current understanding of relationships among Neomphalacea and Peltospiracea. Nautilus 104:77–86Google Scholar
  104. McLean JH (1990b) Neolepetopsidae, a new docoglossate limpet family from hydrothermal vents and its relevance to patellogastropod evolution. J Zool 222:485–528Google Scholar
  105. McLean JH (1991) Four new pseudococculinid limpets collected by the deep-submersible Alvin in the Eastern Pacific. Veliger 34:38–47Google Scholar
  106. McLean JH (1992a) A new species of Pseudorimula (Fissurellacea: Clypeosectidae) from hydrothermal vents of the Mid-Atlantic Ridge. Nautilus 106:115–118Google Scholar
  107. McLean JH (1992b) Cocculiniform limpets (Cocculinidae and Pyropeltidae) living on whale bone in the deep sea off California. J Moll Stud 58:401–414Google Scholar
  108. McLean JH (1993) New species and records of Lepetodrilus (Vetigastropoda: Lepetodrilidae) from hydrothermal vents. Veliger 36:27–35Google Scholar
  109. McLean JH (2008) Three new species of the family Neolepetopsidae (Patellogastropoda) from hydrothermal vents and whale falls in the northeastern Pacific. J Shellfish Res 27:15–20Google Scholar
  110. McLean JH, Geiger DL (1998) New genera and species having the Fissurisepta shell form, with a generic level phylogenetic analysis (Gastropoda: Fissurellidae). Contrib Sci Nat Hist Mus Los Angeles County 475:1–32Google Scholar
  111. McLean JH, Harasewych MG (1995) Review of western Atlantic species of cocculinid and pseudococculinid limpets, with descriptions of new species (Gastropoda: Cocculiniformia). Contrib Sci Nat Hist Mus Los Angeles County 453:1–33Google Scholar
  112. McLean JH, Haszprunar G (1987) Pyropeltidae, a new family of cocculiniform limpets from hydrothermal vents. Veliger 30:196–205Google Scholar
  113. McLean JH, Quinn JF Jr (1987) Cataegis, a new genus of three new species from the continental slope (Trochidae: Cataeginae new subfamily). Nautilus 101:111–116Google Scholar
  114. Mills SW, Beaulieu SE and Mullineaux LS (2007). Photographic identification guide to larvae at hydrothermal vents in the eastern Pacific. Published at: http://www.whoi.edu/science/B/vent-larvel-id
  115. Mullineaux LS, Kim SL, Pooley A, Lutz RA (1996) Identification of archaeogastropod larvae from a hydrothermal vent community. Mar Biol 124:551–560Google Scholar
  116. Nakano T, Ozawa T (2007) Worldwide phylogeography of limpets of the older Patellogastropoda: Molecular, morphological and palaeontological evidence. J Moll Stud 73:79–99Google Scholar
  117. O’Sullivan JB, McConnaughey RR, Huber ME (1987) A blood sucking snail – the cooper nutmeg, Cancellaria cooperi Gabb, parasitizes the California electric ray, Torpedo californica Ayres. Biol Bull 172:362–366Google Scholar
  118. Okutani T (1990) Two new species of Provanna (Gastropoda: Cerithiacea) from “snail pit” in the hydrothermal vent site at the Mariana Back-arc Basin. Venus 49:19–24Google Scholar
  119. Okutani T (2001) Six new bathyal and shelf trochoidean species in Japan. Venus 60(3):121–127Google Scholar
  120. Okutani T, Fujikura K (1990) A new turbinid gastropod collected from the warm seep site in the Minami-Ensei Knoll west of the Amami-Oshima Island, Japan. Venus 49:83–92Google Scholar
  121. Okutani T, Fujikura K (1992) A new turrid gastropod associated with metachromatic seabed near the Calyptogena community in Sagami Bay. Venus 51:1–7Google Scholar
  122. Okutani T, Fujikura K (2002) Abyssal gastropods and bivalves collected by Shinkai 6500 on slope of the Japan Trench. Venus 60:211–224Google Scholar
  123. Okutani T, Fujikura K (2005) Distribution of a deep-sea whelk Bayerius arnoldi (Gastropoda: Buccinidae). Chiribotan 35:121–124 (in Japanse)Google Scholar
  124. Okutani T, Fujiwara Y (2000) Gastropod fauna of a thermal vent site on the North Knoll of Iheya Ridge, Okinawa Trough. Venus 59:123–128Google Scholar
  125. Okutani T, Iwasaki N (2003) Noteworthy abyssal mollusks (excluding vesicomyid bivalves) collected from the Nankai Trough off Shikoku by the ROV Kaiko of the Japan Marine Science and Technology Center. Venus 62:1–10Google Scholar
  126. Okutani T, Ohta S (1988) A new gastropod mollusk associated with hydrothermal vents in the Mariana Back-arc Basin, Western Pacific. Venus 47:1–10Google Scholar
  127. Okutani T, Ohta S (1993) New buccinid and turrid gastropods from North Fiji and Lau Basins. Venus 52:217–221Google Scholar
  128. Okutani T, Saito H, Hashimoto J (1989) A new neritacean limpet from a hydrothermal vent site near Ogasawara Islands, Japan. Venus 48:223–230Google Scholar
  129. Okutani T, Tsuchida E, Fujikura K (1992) Five bathyal gastropods living within or near the Calyptogena community of the Hatsushima Islet, Sagami Bay. Venus 51:137–148Google Scholar
  130. Okutani T, Fujikura K, Sasaki T (1993) New taxa and new distribution records of deepsea gastropods collected from or near the chemosynthetic communities in the Japanese waters. Bull Nat Sci Mus Ser A (Zool) 19:123–143Google Scholar
  131. Okutani T, Sasaki T, Tsuchida S (2000) Two additional new species to gastropod fauna of chemosynthetic site on North Knoll of Iheya Ridge, Okinawa Trough. Venus 59:267–275Google Scholar
  132. Okutani T, Hashimoto J, Sasaki T (2004) New gastropod taxa from hydrothermal vent (Kairei Field) in the central Indian Ocean. Venus 63:1–11Google Scholar
  133. Olu-Le Roy K, Sibuet M, Fiala-Médioni A et al (2004) Cold seep communities in the deep eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes. Deep Sea Res Pt I 51:1915–1936Google Scholar
  134. Plouviez S, Shank TM, Faure B et al (2009) Comparative phylogeography among hydrothermal vent species along the East Pacific Rise reveals vicariant processes and population expansion in the South. Mol Ecol 18:3903–3917Google Scholar
  135. Ponder WF, Lindberg DR (1997) Towards a phylogeny of gastropod mollusks: a preliminary analysis using morphological characters. Zool J Linn Soc 19:83–265Google Scholar
  136. Pradillon F, Shillito B, Young CM et al (2001) Developmental arrest in vent worm embryos. Nature 413:698–699Google Scholar
  137. Puillandre N, Samadi S, Boisselier MC et al (2008) Starting to unravel the toxoglossan knot: Molecular phylogeny of the “turrids” (Neogastropoda: Conoidea). Mol Phylogenet Evol 47:1122–1134Google Scholar
  138. Robertson R (1989) Spermatophores of aquatic non-stylommatophoran gastropods: a review with new data on Heliacus (Architectonicidae). Malacologia 30:341–364Google Scholar
  139. Robertson R (2007) Taxonomic occurrences of gastropod spermatozeugmata and non-­stylommatophoran spermatophores updated. Am Malacol Bull 23:11–16Google Scholar
  140. Salvini-Plawen Lv, Steiner G (1996) Synapomorphies and plesiomorphies in higher classification of Mollusca. In: Taylor JD (ed) Origin and evolutionary radiation of the Mollusca. Oxford University Press, OxfordGoogle Scholar
  141. Sasaki T (1998) Comparative anatomy and phylogeny of the Recent Archaeogastropoda (Mollusca: Gastropoda). Univ Mus Univ Tokyo Bull 38:1–223Google Scholar
  142. Sasaki T (2008) Micromolluscs in Japan: taxonomic composition, habitats, and future topics, In: Geiger DL, Ruthensteiner B (eds) Micromolluscs: methodological challenges – exciting results. Zoosymposia 1:147–232Google Scholar
  143. Sasaki T, Ishikawa H (2002) The first occurrence of a neritopsine gastropod from phreatic community. J Moll Stud 68:286–288Google Scholar
  144. Sasaki T, Okutani T (2005) A new species of Lurifax (Gastropoda: Heterobranchia: Orbitestellidae) from Sumisu Caldera, southern Japan. Venus 63:121–124Google Scholar
  145. Sasaki T, Okutani T, Fujikura K (2003) New taxa and new records of patelliform gastropods associated with chemoautosynthesis-based communities in Japanese waters (Mollusca: Gastropoda). Veliger 46:189–210Google Scholar
  146. Sasaki T, Okutani T, Fujikura K (2005) Molluscs from hydrothermal vents and cold seeps in Japan: A review of taxa recorded in twenty recent years (1984–2004). Venus 64:87–133Google Scholar
  147. Sasaki T, Okutani T, Fujikura K (2006a) Anatomy of Bathyacmaea secunda Okutani, Fujikura and Sasaki, 1993 (Patellogastropoda: Acmaeidae). J Moll Stud 72:295–309Google Scholar
  148. Sasaki T, Okutani T, Fujikura K (2006b) Anatomy of Shinkailepas myojinensis Sasaki, Okutani and Fujikura, 2003 (Gastropoda: Neritopsina). Malacologia 48:1–26Google Scholar
  149. Sasaki T, Fujikura K, Okutani T (2007) Molluscs collected in the cruise NT06-04 of R/V Natsushima from methane-seeps off Hatsushima Island. Sagami Bay. Chiribotan 37:197–207 (in Japanese)Google Scholar
  150. Sasaki T, Okutani T, Fujikura K (2008) A new species of Pyropelta (Lepetelloidea: Pyropeltidae) from hydrothermal vents off Yaeyama Islands, Okinawa, Japan. J Moll Stud 74:309–316Google Scholar
  151. Sellanes J, Quiroga E, Neira C (2008) Megafauna community structure and trophic relationships at the recently discovered Concepción Methane Seep Area, Chile, 36°S. ICES J Mar Sci 65:1102–1111Google Scholar
  152. Shuto T (1974) Larval ecology of prosobranch gastropods and its bearing on biogeography and paleontology. Lethaia 7:239–256Google Scholar
  153. Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol Ann Rev 41:311–354Google Scholar
  154. Smith CR, Kukert H, Wheatcroft RA et al (1989) Vent fauna on whale remains. Nature 34:127–128Google Scholar
  155. Smriglio C, Mariottini P (2002) Lurifax vitreus Warén and Bouchet, 2001 (Gastropoda, Orbitestellidae), first report from Western Mediterranean Sea. Boll Malacol 38:45–47Google Scholar
  156. Stein JL, Cary SC, Hessler RR et al (1988) Chemoautotrophic symbiosis in a hydrothermal vent gastropod. Biol Bull 174:373–378Google Scholar
  157. Suzuki Y, Sasaki T, Suzuki M et al (2005a) Novel chemoautotrophic endosymbiosis between a member of the e-Proteobacteria and the hydrothermal-vent gastropod Alviniconcha aff. hessleri (Gastropoda: Provannidae) from the Indian Ocean. Appl Environ Microb 71:5440–5450Google Scholar
  158. Suzuki Y, Sasaki T, Suzuki M et al (2005b) Molecular phylogenetic and isotopic evidence of two lineages of chemoautotrophic endosymbionts distinct at the subdivision level harbored in one host-animal type: the genus Alviniconcha (Gastropoda: Provannidae). FEMS Microb Lett 249:105–112Google Scholar
  159. Suzuki Y, Kojima S, Sasaki T et al (2006a) Host-symbiont relationships in hydrothermal vent gastropods of the genus Alviniconcha from the Southwest Pacific. Appl Environ Microb 72:1388–1393Google Scholar
  160. Suzuki Y, Kojima S, Watanabe H et al (2006b) Single host and symbiont lineages of hydrothermalvent gastropods Ifremeria nautilei (Provannidae): biogeography and evolution. Mar Ecol Prog Ser 325:167–175Google Scholar
  161. Suzuki Y, Kopp RE, Kogure T et al (2006c) Sclerite formation in the hydrothermal-vent “scaly-foot” gastropod – possible control of iron sulfide biomineralization by the animal. Earth Planet Sci Lett 242:39–50Google Scholar
  162. Sysoev AV, Kantor YI (1995) Two new species of Phymorhynchus (Gastropoda, Conoidea, Conidae) from the hydrothermal vents. Ruthenica 5:17–26Google Scholar
  163. Tamburri MN, Barry JP (1999) Adaptations for scavenging by three diverse bathyal species, Eptatretus stouti, Neptuea amianta and Orchomene obtusus. Deep Sea Res Pt I 46:2079–2093Google Scholar
  164. Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates. Biol Rev 25:1–45Google Scholar
  165. Tunnicliffe V (1991) The biology of hydrothermal vents ecology and evolution. Oceanogr Mar Biol Ann Rev 29:319–407Google Scholar
  166. Tunnicliffe V (1992) The nature and origin of the modern hydrothermal vent fauna. Palaios 7:338–350Google Scholar
  167. Tyler PA, Young CM (2003) Dispersal at hydrothermal vents: a summary of recent progress. Hydrobiologia 503:9–19Google Scholar
  168. Tyler PA, Pendlebury S, Mills SW et al (2008) Reproduction of gastropods from vents on the East Pacific Rise and the Mid-Atlantic Ridge. J Shellfish Res 27:107–118Google Scholar
  169. Valdés À, Bouchet P (1998) Naked in toxic fluids: A nudibranch mollusc from hydrothermal vents. Deep sea Res Pt II 45:319–327Google Scholar
  170. Van Dover CL (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, Princeton, NJGoogle Scholar
  171. Van Gaest AL, Young CM, Young JJ et al (2007) Physiological and behavioral responses of Bathynerita naticoidea (Gastropoda: Neritidae) and Methanoaricia dendrobranchiata (Polychaeta: Orbiniidae) to hypersaline conditions at a brine pool cold seep. Mar Ecol 28:199–207Google Scholar
  172. Vermeij GJ (1993) A natural history of shells. Princeton University Press, Princeton, NJGoogle Scholar
  173. Vilvens C, Sellanes J (2006) Descriptions of Otukaia crustulum new species (Gastropoda: Trochoidea: Calliostomatidae) and Margarites huloti new species (Gastropoda: Trochoidea: Trochidae) from a methane seep area off Chile. Nautilus 120:15–20Google Scholar
  174. Voight JR (2000a) A deep-sea octopus (Graneledone cf. boreopacifica) as a shell-crushing hydrothermal vent predator. J Zool 252:335–341Google Scholar
  175. Voight JR (2000b) A review of predators and predation at deep-sea hydrothermal vents. Cah Biol Mar 41:155–166Google Scholar
  176. Voight JR, Sigwart JD (2007) Scarred limpets at hydrothermal vents: evidence of predation by deep-sea whelks. Mar Biol 152:129–133Google Scholar
  177. Warén A (1992) New and litte known “skeneimorph” gastropods from the Mediterranean Sea and the adjacent Atlantic Ocean. Boll Malacol 27:149–248Google Scholar
  178. Warén A (1996) New and little known Mollusca from Iceland and Scandinavia, Part 3. Sarsia 81:197–245Google Scholar
  179. Warén A, Bouchet P (1986) Four new species of Provanna Dall (Prosobranchia, Cerithiacea) from East Pacific hydrothermal sites. Zool Scr 15:157–164Google Scholar
  180. Warén A, Bouchet P (1989) New gastropods from east Pacific hydrothermal vents. Zool Scr 18:67–102Google Scholar
  181. Warén A, Bouchet P (1993) New records, species, genera, and a new family of gastropods from hydrothermal vents and hydrocarbon seeps. Zool Scr 22:1–90Google Scholar
  182. Warén A, Bouchet P (2001) Gastropoda and Monoplacophora from hydrothermal vents and seeps; new taxa and records. Veliger 44:116–231Google Scholar
  183. Warén A, Bouchet P (2009) New gastropods from deep-sea hydrocarbon seeps off West Africa. Deep Sea Res Pt II 57:2326–2349Google Scholar
  184. Warén A, Ponder WF (1991) New species, anatomy and systematic position of the hydrothermal vent and hydrocarbon seep gastropod family Provannidae fam. n. (Caenogastropoda). Zool Scr 20:27–56Google Scholar
  185. Warén A, Bengtson S, Goffredi SK et al (2003) A hot-vent gastropod with iron sulfide dermal sclerites. Science 302:1007Google Scholar
  186. Watanabe H, Fujikura K, Kinoshita G et al (2009) Egg capsule of Phymorhynchus buccinoides (Gastropoda: Turridae) in a deep-sea methane seep site in Sagami Bay, Japan. Venus 67:181–188Google Scholar
  187. Williams ST, Ozawa T (2006) Molecular phylogeny suggests polyphyly of both the turban shells (family Turbinidae) and the superfamily Trochoidea (Mollusca: Vetigastropoda). Mol Phylogenet Evol 39:33–51Google Scholar
  188. Williams ST, Karube S, Ozawa T (2008) Molecular systematics of Vetigastropoda: Trochidae, turbinidae and trochoidea redefined. Zool Scr 37:483–506Google Scholar
  189. Windoffer R, Giere O (1997) Symbiosis of the hydrothermal vent gastropod Ifremeria nautilei (Provannidae) with endobacteria – structural analyses and ecological considerations. Biol Bull 193:381–392Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Takenori Sasaki
    • 1
  • Anders Warén
    • 2
  • Yasunori Kano
    • 3
  • Takashi Okutani
    • 4
  • Katsunori Fujikura
    • 4
  1. 1.The University Museum, The University of TokyoTokyoJapan
  2. 2.Swedish Museum of Natural HistoryStockholmSweden
  3. 3.Atmosphere and Ocean Research InstituteThe University of TokyoChibaJapan
  4. 4.Japan Agency for Marine-Earth Science and TechnologyYokosukaJapan

Personalised recommendations