Terms for Delamination in Wood Science and Technology



In Material Science, delamination is defined as a sub critical damage to the interfaces between the plies in a laminate composite that causes a reduction in the load carrying capacity of composite (Morris 1992).


  1. American Society for Testing and Materials (2007) Standard terminology relating to wood and wood-based products. ASTM D 9 – 05. Philadelphia, PAGoogle Scholar
  2. American Society for Testing and Materials (2007) Standard test methods for evaluating properties of wood - base fibre particle panel material. ASTM D 1037-06a. Philadelphia, PAGoogle Scholar
  3. American Society for Testing and Materials (2007) Standard terminology relating to veneer and plywood. ASTM D 1038- 83 (2005) Philadelphia, PAGoogle Scholar
  4. American Society for Testing and Materials (2007) Standard terminology relating to wood-based fibre and particle panel material ASTM D 1554 - 01 (2005) Philadelphia, PAGoogle Scholar
  5. American Society for Testing and Materials (2007) test methods for structural panels in shear through the thickness. ASTM D 2719 – 89 (2007) Philadelphia, PAGoogle Scholar
  6. American Society for Testing and Materials (2007) Standard test method for shear modulus of wood-based structural panels. ASTM D 3044 – 94 (2006) Philadelphia, PAGoogle Scholar
  7. American Society for Testing and Materials (2007) Standard test method for toughness wood-based structural panels. ASTM D 3499 – 94 (2005) Philadelphia, PAGoogle Scholar
  8. American Society for Testing and Materials (2007) Standard practice for establishing allowable properties of structural glued-laminated timber (glulam). ASTM D 3737- 07 Philadelphia, PAGoogle Scholar
  9. American Society for Testing and Materials (2007) Specification for evaluation of structural composite lumber. ASTM D 5456-06 Philadelphia, PAGoogle Scholar
  10. American Society for Testing and Materials (2007) Standard test method for surface bond strength of wood-based fibre and particle panel material ASTM D 5651 – 95a (2002) Philadelphia, PAGoogle Scholar
  11. American Society for Testing and Materials (2007) Standard guide for evaluating mechanical and physical properties of wood-plastic composites products ASTM D 7031 -04 (2004) Philadelphia, PAGoogle Scholar
  12. ASTM D1101 - 97a (2006) Standard Test Methods for Integrity of Adhesive Joints in Structural Laminated Wood Products for Exterior UseGoogle Scholar
  13. Bienfait JL (1926) Relation of the manner of failure to the structure of wood under compression parallel to the grain. J Agri Res 33:183–194Google Scholar
  14. Boatright SWJ, Garrett GG (1983) The effect of microstructure and stress state on the fracture behaviour of wood. J Mat Sci 18:2181–2199CrossRefGoogle Scholar
  15. Bolotin VV (1996) Delaminations in composite structures: its origin, buckling, growth and stability. Composites: Part B, 27B:129–145CrossRefGoogle Scholar
  16. Brush WD (1913) A microscopic study of the mechanical failure of wood. U.S. Depart Agri Rev Forest Serv 2:33–38Google Scholar
  17. Chafe SC (1977) Radial dislocations in the fiber wall of Eucalyptus regnans trees of high growth stress. Wood Sci Techn 11:69–77Google Scholar
  18. Clair B (2001) Etudes des proprietes mecaniques et du retrait au sechage du bois a l`echelle de la paroi cellulaire . PhD thesis Universite de Montpellier II. FranceGoogle Scholar
  19. Côté WA, Hanna RB (1983) Ultrastructural characteristics of wood fracture surfaces. Wood Fiber Sci 15:135–163Google Scholar
  20. Dadswell HE, Langlands I (1934) Brittle heart in Australian timbers: a preliminary study. J Couns Sci Ind Res Australia 7:190–196Google Scholar
  21. Dinwoodie JM (1966) Introduction of cell wall dislocations (slip planes) during the preparation of microscopic sections of wood. Nature 212:525–527CrossRefGoogle Scholar
  22. Dinwoodie JM (1968) Failure in timber. Part I. Microscopic changes in cell wall structure associated with compression failure. J Inst Wood Sci 4:37–53Google Scholar
  23. Dill-Langer G, Lutze S, Aicher S (2002) Microfracture in wood monitored by confocal laser scanning microscopy. Wood Sci Technol 36:487–499CrossRefGoogle Scholar
  24. Donaldson LA (1995) Cell wall fracture properties in relation to lignin distribution and cell dimensions among three genetic groups of radiate pine. Wood Sci Techn 29:51–63Google Scholar
  25. Fruhmann K, Burgert I, Stanzl-Tschegg SE, Tschegg EK Mode I (2003) Fracture behaviour on the growth ring scale and cellular level of spruce and beech loaded in the TR crack propagation system. Holzforschung, 57:653–660CrossRefGoogle Scholar
  26. Green HV (1962) Compression caused transverse discontinuities in tracheids. Pulp Paper Mag Canada 63(3):T 155 – T 168Google Scholar
  27. Jacard P (1910) Etude anatomique des bois comprimés. Mitt Schw. Centralanstalt. Forst. Versuchwessen 10:53–101Google Scholar
  28. Keith CT (1971) The anatomy of compression failure in relation to creep – inducing stresses. Wood Sci 4:71–82Google Scholar
  29. Keith CT (1974) Longitudinal compressive creep and failure development in white spruce compression wood. Wood Sci 7:1–12Google Scholar
  30. Keith CT, Côté Jr. WA (1968) Microscopic characterization of lip lines and compression failures in wood cell walls. Forest Prod J 18:67–74Google Scholar
  31. Kisser J, Frenzel H (1950) Mikroskopische Veränderungen der Holzstruktur bei mechanischer Überbeansprucging von Holz in der Faserrichtung. Schr Österr. Ges. Holzforschung 2:3–27Google Scholar
  32. Kisser J, Frenzel H (1952) Makroscopische und microsckopische Strukturänderungen bei der Biegebeanspruchung von Holz. Holz Roh- und Werkstoff 10:415–421CrossRefGoogle Scholar
  33. Kucera LJ, Bariska M (1982) On the fracture morphology in wood. Part I: A SEM - study of deformations in wood of spruce and aspen upon ultimate axial compression load. Wood SciTechnol 16:241–259CrossRefGoogle Scholar
  34. Meyer RV, Leney L (1968) Shake in coniferous woods – an anatomical study. Forest Prod J 18(2):51–56Google Scholar
  35. Morris C (ed) (1992) Dictionary of science and technology. Academic, Sandiego, p 604Google Scholar
  36. Murmanis L, Youngquist JA, Myers GC (1986) Electron microscopy study of hardboards. Wood Fiber Sci 18(3):369–375Google Scholar
  37. Reiter A, Sinn G (2002) Facture behaviour of modified spruce wood: a study using linear and non linear fracture mechanics. Holzforschung 56:191–198CrossRefGoogle Scholar
  38. Reiter A, Sinn G, Stanzl-Tschegg SE (2002) Fracture characteristics of different wood species under mode I loading perpendicular to the grain. Mater Sci Eng A 332:29–36CrossRefGoogle Scholar
  39. Robinson W (1920) The microscopical features of mechanical strains in timber and the bearing of these on the structure of the cell wall in plants. Phil Trans R Soc 210 B:49–82Google Scholar
  40. Scurfield G, Silva SR, Wold MB (1972) Failure of wood under load applied parallel to grain. A study using scanning electron microscopy. Micron 3:160–184Google Scholar
  41. Sell J, Zimmermann T (1998) The fine structure of the cell wall of hardwoods on transverse fracture surfaces. HolzRoh Werkst 56:365–366CrossRefGoogle Scholar
  42. Thuvander F, Berglund LA (2000) In situ observations of fracture mechanisms for radial cracks in wood. J Mat Sci 35:6277–6283CrossRefGoogle Scholar
  43. Tschegg EK, Fruhmann K, Stanzl-Tschegg SE (2001) Damage and fracture mechanisms during mode I and mode III loading of wood. Holzforschung 55:525–533CrossRefGoogle Scholar
  44. Vasic S, Stanzl-Tschegg SE (2007) Experimental and numerical investigation of wood fracture mechanisms at different humidity levels. Holzforschung 61:367–374CrossRefGoogle Scholar
  45. Wardrop AB, Dadswell HE (1947) The occurrence, structure and properties of certain cell wall deformations. J Coun Sci Ind Res Aust 221(5):14–32Google Scholar
  46. Wilkins AP (1986) The nomenclature of cell wall deformations. Wood Sci Technol 20:97–109Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Materials Science and Engineering Div.CSIROClaytonAustralia

Personalised recommendations