From Non-invasive Site Characterization to Site Amplification: Recent Advances in the Use of Ambient Vibration Measurements

  • P.-Y. Bard
  • H. Cadet
  • B. Endrun
  • M. Hobiger
  • F. Renalier
  • N. Theodulidis
  • M. Ohrnberger
  • D. Fäh
  • F. Sabetta
  • P. Teves-Costa
  • A.-M. Duval
  • C. Cornou
  • B. Guillier
  • M. Wathelet
  • A. Savvaidis
  • A. Köhler
  • J. Burjanek
  • V. Poggi
  • G. Gassner-Stamm
  • H.B. Havenith
  • S. Hailemikael
  • J. Almeida
  • I. Rodrigues
  • I. Veludo
  • C. Lacave
  • S. Thomassin
  • M. Kristekova
Chapter

Abstract

A series of investigations has been carried out over the last decade in Europe aimed at deriving quantitative information on site amplification from non-invasive techniques, based principally on surface wave interpretations of ambient noise measurements. The present paper focuses on their key outcomes regarding three main topics. First, methodological, hardware and software developments focusing on the acquisition and the processing of both single point and array microtremor measurements, led to an efficient tool with in situ control and processing, giving rise to robust and reproducible results. A special attention has been devoted to the derivation and use of the Rayleigh wave ellipticity. Second, the reliability of these new tools has been assessed through a thorough comparison with borehole measurements for a representative – though limited – set of sites located in Southern Europe, spanning from stiff to soft, and shallow to thick. Finally, correlations between the site parameters available from such non-invasive techniques, and the actual site amplification factors as measured with standard techniques, are derived from a comprehensive analysis of the Japanese KIKNET data. This allows to propose alternative, simple site characterization providing an improved variance reduction compared with the “classical” VS30 classification. While these results could pave the road for the next generation of building codes, they can also be used now for regulatory site classification and microzonation studies, in view of improved mapping and estimation of site amplification factors, and for the characterization of existing strong motion sites.

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723CrossRefGoogle Scholar
  2. Aki K (1957) Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull Earth Res Inst Tokyo Univ 25:415–457Google Scholar
  3. Asmussen JC (1997) Modal analysis based on the random decrement technique – application to civil engineering structures. PhD thesis, University of Aalborg, Denmark, 227pGoogle Scholar
  4. Bard P-Y, SESAME Participants (2004) The SESAME project: an overview and main results. In: Proceedings of the 13th world conference in earthquake engineering, Vancouver, BC, Aug 2004, Paper No 2207Google Scholar
  5. Bettig B, Bard P-Y, Scherbaum F, Riepl J, Cotton F, Cornou C, Hatzfeld D (2001) Analysis of dense array noise measurements using the modified spatial auto-correlation method (SPAC). Application to the Grenoble area. Boll Geof Teor Appl 42:281–304Google Scholar
  6. Bonnefoy-Claudet S, Kohler A, Cornou C, Wathelet M, Bard PY (2008) Effects of love waves on microtremor H/V ratio. Bull Seism Soc Am 98(1):288–300CrossRefGoogle Scholar
  7. Boore DM, Joyner WB (1997) Site amplifications for generic rock sites. Bull Seism Soc Am 74(5):2035–2039Google Scholar
  8. Borcherdt RD (1994) Estimates of site-dependent response spectra for design (methodology and justification). Earthquake Spectra 10:617–653CrossRefGoogle Scholar
  9. Cadet H (2007) Utilisation combinée des méthodes basées sur le bruit de fond dans le cadre du microzonage sismique. Ph.D. thesis, Joseph Fourier University, 31 Oct 2007 (301p, in French)Google Scholar
  10. Cadet H, Bard P-Y, Duval A-M (2008) A new proposal for site classification based on ambient vibration measurements and the kiknet strong motion data set. In: Proceedings of the 14th world conference on earthquake engineering, Beijing (China), Oct 2008, 8p, Paper No 03-01-0036Google Scholar
  11. Cadet H, Bard P-Y, Rodriguez-Marek A (2010a) Defining a standard rock. Propositions based on the KiK-net data. Bull Seism Soc Am 100(1):172–195, Feb 2010. doi: 10.1785/0120090078CrossRefGoogle Scholar
  12. Cadet H, Bard P-Y, Rodriguez-Marek A (2010b) Site effect assessment using KiK-net data – Part 1 – Normalizing site over down-hole reference spectral ratios: a proposal for correction procedures for depth and impedance effects. Bull Earthquake Eng (submitted)Google Scholar
  13. Cadet H, Bard P-Y, Duval AM, Bertrand E (2010c) Site effect assessment using KiK-net data – Part 2 – site amplification prediction equation SAPE based on f0 and Vsz. Bull Earthquake Eng (submitted)Google Scholar
  14. Capon J (1969) High-resolution frequency – wavenumber spectrum analysis. Proc IEEE 57(8):1408–1418CrossRefGoogle Scholar
  15. Castellaro S, Mulargia F, Rossi PL (2008) Vs30: proxy for seismic amplification? Seism Res Lett 79(4):540–543. doi: 10.1785/gssrl.79.4.540CrossRefGoogle Scholar
  16. Cornou C, Ohrnberger M, Boore D, Kudo K, Bard P-Y (2009) Derivation of structural models from ambient vibration array recordings: results from an international blind test. ESG2006 2:1127–1219Google Scholar
  17. Di Giulio G, Cornou C, Ohrnberger M, Wathelet M, Rovelli A (2006) Deriving wavefield characteristics and shear-velocity profiles from two-dimensional small-aperture arrays analysis of ambient vibrations in a small-size alluvial basin, Colfiorito, Italy. Bull Seism Soc Am 96(5):1915–1933CrossRefGoogle Scholar
  18. Endrun B, Ohrnberger M, Savvaidis A (2009) On the repeatability and consistency of three-component ambient vibration array measurements. Bull Earthquake Eng 8(3):535–570. doi: 10.1007/s10518-009-9159-9CrossRefGoogle Scholar
  19. Fäh D, Kind F, Giardini D (2001) A theoretical investigation of average H/V ratios. Geophys J Int 145:535–549.CrossRefGoogle Scholar
  20. Fäh D, Poggi V, Marano S, Michel C, Burjanek J, Bard P-Y, Cornou C, Wathelet M, Renalier F, Hobiger M, Cadet H, Ohrnberger M, Endrun B, Savvaidis A, Theodulidis N, Kristekova M, Hailemikael S, Sabetta F et al (2010) Guidelines for the implementation of ambient vibration array techniques: measurement, processing and interpretation. Neries deliverable JRA4-D9, http://www.neries-eu.org
  21. Haghshenas E, Bard P-Y, Theodulidis N, SESAME WP04 Team (2008) Empirical evaluation of microtremor H/V spectral ratio. Bull Earthquake Eng 6:75–108. doi: 10.1007/s10518-007-9058-xCrossRefGoogle Scholar
  22. Havenith HB, Jongmans D, Faccioli E, Abdrakhmatov K, Bard P-Y (2002)Site effect analysis around the seismically induced Ananevo rockslide, Kyrgyzstan. Bull Seism Soc Am 92(8):3190–3209CrossRefGoogle Scholar
  23. Hobiger M, Bard P-Y, Cornou C, Le Bihan N (2009a) Single station determination of Rayleigh wave ellipticity by using the random decrement technique (RayDec). Geophys Res Lett 36:L14303. doi: 10.1029/2009GL038863CrossRefGoogle Scholar
  24. Hobiger M, le Bihan N, Cornou C, Bard P-Y (2009b) Rayleigh wave ellipticity estimation from ambient seismic noise using single and multiple vector-sensor techniques, accepted for EUSIPCO 2009 (Seventeenth European Signal Processing Conference, Glasgow, 24–28 Aug 2009)Google Scholar
  25. Hobiger M, Cornou C, Bard P-Y, Le Bihan N, Renalier F, Endrun B (2010) Inversion of Rayleigh wave ellipticity measurements in preparation for BSSAGoogle Scholar
  26. Köhler A, Ohrnberger M, Scherbaum F, Wathelet M, Cornou C (2007) Assessing the reliability of the modified three-component spatial autocorrelation technique. Geophys J Int 168(2):779–796CrossRefGoogle Scholar
  27. Lacoss RT, Kelly EJ, Toksöz MN (1969) Estimation of seismic noise structure using arrays. Geophysics 34:21–38CrossRefGoogle Scholar
  28. Moss RES (2008) Quantifying measurement uncertainty of thirty-meter shear-wave velocity. Bull Seism Soc Am 98(3):1399–1411, June 2008. doi: 10.1785/0120070101CrossRefGoogle Scholar
  29. Mucciarelli M, Gallipoli MR (2006) Comparison between Vs30 and other estimates of site amplification in Italy. In: Proceedings of the 1st European conference on earthquake engineering and seismology, Geneva, Switzerland, 3–8 Sept, Paper No 270Google Scholar
  30. Ohrnberger M (2005) Report on the FK/SPAC capabilities and limitations. SESAME Deliverable D19.06, 43 pp, http://sesame-fp5.obs.ujf-grenoble.fr/Delivrables/Del-D19-Wp06.pdf
  31. Ohrnberger M, Schissele E, Cornou C, Bonnefoy-Claudet S, Wathelet M, Savvaidis A, Scherbaum F, Jongmans D (2004) Frequency wavenumber and spatial autocorrelation methods for dispersion curve determination from ambient vibration recordings. In: Proceedings of the 13th world conference on earthquake engineering, Vancouver, BC, Paper No 0946Google Scholar
  32. Park CB, Miller RD, Xia J (1999) Multi-channel analysis of surface waves (MASW). Geophysics 64:800–808CrossRefGoogle Scholar
  33. Poggi V, Fäh D (2010) Estimating Rayleigh wave particle motion from three-component array analysis of ambient vibrations. Geophys J Int 180(1):251–267CrossRefGoogle Scholar
  34. Pousse G (2005) Analyse des données accélérométriques de K-net et KIK-net: implications sur la prédiction du mouvement sismique – accélérogrammes et spectres de réponse – et la prise en compte des effets de site non-linéaires. Ph.D. Thesis, University Joseph Fourier (in French)Google Scholar
  35. Renalier F (2010) Caractérisation sismique de sites hétérogènes à partir de méthodes actives et passives: variations latérales et temporelles. Ph.D. Thesis, Joseph Fourier University, Grenoble, 224pGoogle Scholar
  36. Sambridge M (1999) Geophysical inversion with a neighbourhood algorithm: I. Searching a parameter space. Geophys J Int 138:479–494. doi: 10.1046/j.1365-246X.1999.00876.xCrossRefGoogle Scholar
  37. Savvaidis A, Ohrnberger M, Wathelet M, Cornou C, Bard P-Y, Theodoulidis N (2009) Variability analysis of shallow shear wave velocity profiles obtained from dispersion curve inversion considering multiple model parameterization. Abstr Seism Res Lett 80(2):354, SSA Meeting, Monterey, Apr 2009Google Scholar
  38. Wathelet M (2008) An improved neighborhood algorithm: parameter conditions and dynamic scaling. Geophys Res Lett 35:L09301. doi: 10.1029/2008GL033256CrossRefGoogle Scholar
  39. Wathelet M, Jongmans D, Ohrnberger M (2004) Surface wave inversion using a direct search algorithm and its application to ambient vibration measurements. Near Surf Geophys 2:211–221Google Scholar
  40. Wathelet M, Jongmans D, Ohrnberger M (2005) Direct inversion of spatial autocorrelation curves with the neighborhood algorithm. Bull Seism Soc Am 95:1787–1800CrossRefGoogle Scholar
  41. Wathelet M, Jongmans D, Ohrnberger M, Bonnefoy-Claudet S (2008) Array performance for ambient vibrations on a shallow structure and consequences over vs inversion. J Seism 12:1–19. doi: 10.1007/s10950-007-9067-xCrossRefGoogle Scholar
  42. Zor E, Özalaybey S, Karaaslan A, Tapırdamaz MC, Özalaybey SÇ, Tarancioglu Al, Erkan B (2010) Shear-wave velocity structure of the Izmit Bay area (Turkey) Estimated from active-passive array surface wave and single-station microtremor methods. Geophys J Int under revision (submitted)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • P.-Y. Bard
    • 1
  • H. Cadet
    • 2
  • B. Endrun
    • 3
  • M. Hobiger
    • 1
  • F. Renalier
    • 1
  • N. Theodulidis
    • 2
  • M. Ohrnberger
    • 3
  • D. Fäh
    • 4
  • F. Sabetta
    • 5
  • P. Teves-Costa
    • 6
  • A.-M. Duval
    • 7
  • C. Cornou
    • 1
  • B. Guillier
    • 1
  • M. Wathelet
    • 1
  • A. Savvaidis
    • 2
  • A. Köhler
    • 3
  • J. Burjanek
    • 4
  • V. Poggi
    • 4
  • G. Gassner-Stamm
    • 4
  • H.B. Havenith
    • 4
  • S. Hailemikael
    • 5
  • J. Almeida
    • 6
  • I. Rodrigues
    • 6
  • I. Veludo
    • 6
  • C. Lacave
    • 8
  • S. Thomassin
    • 8
  • M. Kristekova
    • 9
  1. 1.LGIT, Maison des GeosciencesJoseph Fourier UniversityGrenoble Cedex 9France
  2. 2.Institute of Engineering Seismology and Earthquake Engineering (ITSAK)ThessalonikiGreece
  3. 3.Institute of Earth and Environmental Sciences, University of PotsdamPotsdam OT GolmGermany
  4. 4.Swiss Seismological Service, ETH ZürichZürichSwitzerland
  5. 5.Ufficio Valutazione del Rischio Sismico, Dipartimento della Protezione CivileRomaItaly
  6. 6.Lisbon Fundaçao da Faculdade Ciencias da Universidade de Lisboa, IDLLisboaPortugal
  7. 7.CETE MéditerranéeNice Cedex 4France
  8. 8.Résonance S.A.Carouge-GenèveSwitzerland
  9. 9.Geophysical Institute, Academy of SciencesBratislavaSlovak Republic

Personalised recommendations