Early Detection of Systems Response: Molecular and Functional Imaging of Angiogenesis

  • Fabian Kiessling
  • Wiltrud Lederle
Part of the The Tumor Microenvironment book series (TTME, volume 3)


Non invasive imaging plays a crucial role in monitoring the efficacy of tumor therapy in the clinics. In addition, it has also been established in preclinical research and can favorably bridge from preclinical research to the clinics. However, up to now clinical imaging is mostly morphologic and does not meet the demands for innovative molecular and personalized therapy concepts. In order to become more disease and therapy specific, functional and molecular imaging strategies are of general interest. In this context, imaging of tumor angiogenesis as a general phenomenon of most tumors and as an important target for tumor therapy is an attractive approach.

This chapter reports on current strategies to assess functional parameters of vascularization (e.g. relative blood volume, perfusion, vessel permeability) as well as molecular vascular profiles by non invasive imaging. Hereby, CT, MRI, PET, optical imaging and ultrasound are covered. It is also reported how these tools can be used to assess tumor response to therapy and which role they may play in preclinical research and clinical use.


Molecular imaging Functional imaging Perfusion Therapy monitoring Angiogenesis Personalized medicine 





Blood oxygenation level dependent


Computed tomography


Cross linked iron oxide particle




Dynamic contrast enhanced computed tomography


Dynamic contrast enhanced magnetic resonance imaging


1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid


[18F]-fluoroazomycin arabinoside




Fibroblast growth factor-2








Inter-cellular adhesion molecule 1


Uptake rate constant (extravascular space per unit volume)


Volume transfer constant


Monocristalline iron oxide nanoparticle


Matrix metalloproteinase


Magnetic resonance imaging


Membrane type-1 matrix metalloproteinase


Near-infrared fluorescence


Optical imaging


Perfluorocarbon emulsion


Positron emission tomography


Quantum dot


Squamous cell carcinoma


Single photon emission computed tomography


Superparamagnetic iron oxide nanoparticle


Sunitinib malate


Transforming growth factor beta


T1 weighted


Ultrasmall superparamagnetic iron oxide nanoparticle




Vascular cell adhesion molecule-1


Vascular endothelial growth factor


Vascular endothelial growth factor receptor 2


Extracellular volume fraction


  1. 1.
    Laking GR, Price PM (2003) Positron emission tomographic imaging of angiogenesis and vascular function. Br J Radiol 76:50–59.CrossRefGoogle Scholar
  2. 2.
    Miles KA, Hayball MP, Dixon AK (1993) Functional images of hepatic perfusion obtained with dynamic CT. Radiology 188:405–411.PubMedGoogle Scholar
  3. 3.
    Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101.CrossRefGoogle Scholar
  4. 4.
    Brix G, Bahner ML, Hoffmann U, Horvath A, Schreiber W (1999) Regional blood flow, ­capillary permeability, and compartmental volumes: Measurement with dynamic CT – initial experience. Radiology 210:269–276.PubMedGoogle Scholar
  5. 5.
    Kiessling F, Jugold M, Woenne EC, Brix G (2007) Non-invasive assessment of vessel morphology and function in tumors by magnetic resonance imaging. Eur Radiol, 17:2136–2148.PubMedCrossRefGoogle Scholar
  6. 6.
    Miller JC, Pien HH, Sahani D, Sorensen AG; Thrall JH (2005) Imaging angiogenesis: Applications and potential for drug development. J Natl Cancer Inst 97:172–187.PubMedCrossRefGoogle Scholar
  7. 7.
    Persigehl T, Matuszewski L, Kessler T, Wall A, Meier N, Ebert W, Berdel WE, Heindel W, Mesters R, Bremer C (2007) Prediction of antiangiogenic treatment efficacy by iron oxide enhanced parametric magnetic resonance imaging. Invest Radiol 42:791–796.PubMedCrossRefGoogle Scholar
  8. 8.
    Persigehl T, Bieker R, Matuszewski L, Wall A, Kessler T, Kooijman H, Meier N, Ebert W, Berdel WE, Heindel W, Mesters RM, Bremer C (2007) Antiangiogenic tumor treatment: Early noninvasive monitoring with USPIO-enhanced MR imaging in mice. Radiology 244:449–456.PubMedCrossRefGoogle Scholar
  9. 9.
    Neeman M (2002) Functional and molecular MR imaging of angiogenesis: Seeing the target, seeing it work. J Cell Biochem Suppl 39:11–17.PubMedCrossRefGoogle Scholar
  10. 10.
    Gross S, Gilead A, Scherz A, Neeman M, Salomon Y (2003) Monitoring photodynamic therapy of solid tumors online by BOLD-contrast MRI. Nat Med 9:1327–1331.PubMedCrossRefGoogle Scholar
  11. 11.
    Troprès I, Grimault S, Vaeth A, Grillon E, Julien C, Payen JF, Lamalle L, Decorps M (2001) Vessel size imaging. Magn Reson Med 45:397–408.PubMedCrossRefGoogle Scholar
  12. 12.
    Zwick S, Strecker R, Kiselev V, Gall P, Huppert J, Palmowski M, Lederle W, Woenne EC, Hengerer A, Taupitz M, Semmler W, Kiessling F (2009) Assessment of vascular remodelling under antiangiogenic therapy using DCE-MRI and vessel size imaging. J Magn Reson Imag, 29:1125–1133.CrossRefGoogle Scholar
  13. 13.
    Kiessling F, Huppert J, Palmowski M (2009) Functional and molecular ultrasound imaging: Concepts and contrast agents. Curr Med Chem 16:627–642.PubMedCrossRefGoogle Scholar
  14. 14.
    Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97:473–483.PubMedCrossRefGoogle Scholar
  15. 15.
    Palmowski M, Huppert J, Hauff P, Reinhardt M, Schreiner K, Socher MA, Hallscheidt P, Kauffmann GW, Semmler W, Kiessling F (2008) Vessel fractions in tumor xenografts depicted by flow- or contrast-sensitive 3D high-frequency doppler ultrasound respond differently to multispecific tyrosine kinase receptor inhibition. Cancer Res 68:7042–7049.PubMedCrossRefGoogle Scholar
  16. 16.
    Kang HW, Torres D, Wald L, Weissleder R, Bogdanov AA Jr (2006) Targeted imaging of human endothelial-specific marker in a model of adoptive cell transfer. Lab Invest 86:599–609.PubMedCrossRefGoogle Scholar
  17. 17.
    Kiessling F, Huppert J, Zhang C, Jayapaul J, Zwick S, Woenne EC, Mueller MM, Zentgraf H, Eisenhut M, Addadi Y, Neeman M, Semmler W (2009) RGD-labeled USPIO inhibit adhesion and endocytotic activity of αvβ3 integrin expressing glioma cells and only accumulate in the vascular tumor compartment. Radiology 253:462–469.Google Scholar
  18. 18.
    Mulder WJ, Strijkers GJ, van Tilborg GA, Griffioen AW, Nicolay K (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19:142–164.PubMedCrossRefGoogle Scholar
  19. 19.
    Mulder WJ, van der Schaft DW, Hautvast PA, Strijkers GJ, Koning GA, Storm G, Mayo KH, Griffioen AW, Nicolay K. (2007) Early in vivo assessment of angiostatic therapy efficacy by molecular MRI. FASEB 21:378–383.CrossRefGoogle Scholar
  20. 20.
    Oostendorp M, Douma K, Hackeng TM, Dirksen A, Post MJ, van Zandvoort M, Backes WH (2008) Quantitative molecular magnetic resonance imaging of tumor angiogenesis using cNGR-labeled paramagnetic quantum dots. Cancer Res 68:7676–7683.PubMedCrossRefGoogle Scholar
  21. 21.
    Flacke S, Fischer S, Scott MJ, Fuhrhop RJ, Allen JS,McLean M, Winter P, Sicard GA, Gaffney PJ, Wickline SA, Lanza GM (2001) Novel MRI contrast agent formolecular imaging of fibrin: Implications for detecting vulnerable plaques. Circulation 104:1280–1285.PubMedCrossRefGoogle Scholar
  22. 22.
    Korpanty G, Carbon JG, Grayburn PA, Fleming JB, Brekken RA (2007) Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res 13:323–330.PubMedCrossRefGoogle Scholar
  23. 23.
    Palmowski M, Huppert J, Ladewig G, Hauff P, Reinhardt M, Mueller MM, Woenne EC, Jenne JW, Maurer M, Kauffmann GW, Semmler W (2008) Kiessling F. Molecular profiling of angiogenesis with targeted ultrasound imaging: early assessment of antiangiogenic therapy effects. Mol. Cancer Ther 7:101–109.PubMedCrossRefGoogle Scholar
  24. 24.
    Palmowski M, Peschke P, Huppert J, Hauff P, Reinhardt M, Maurer M, Semmler W, Huber P, Kiessling F (2009) Molecular ultrasound imaging of early vascular response in prostate tumors irradiated with carbon ions. Neoplasia 11:856–863.PubMedGoogle Scholar
  25. 25.
    Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, Becker KF, Goebel M, Hein R, Wester HJ, Kessler H, Schwaiger M (2005) Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F] galacto-RGD. PLOS Medicine 3:244–252148.CrossRefGoogle Scholar
  26. 26.
    Kondo M, Asai T, Katanasaka Y, Sadzuka Y, Tsukada H, Ogino K, Taki T, Baba K, Oku N (2004) Anti-neovascular therapy by liposomal drug targeted to membrane type-1 matrix metalloproteinase. Int J Cancer 108:301–306.PubMedCrossRefGoogle Scholar
  27. 27.
    Sivolapenko GB, Skarlos D, Pectasides D, Stathopoulou E, Milonakis A, Sirmalis G, Stuttle A, Courtenay-Luck NS, Konstantinides K, Epenetos AA (1998) Imaging of metastatic melanoma utilising a technetium-99 m labelled RGD-containing synthetic peptide. Eur J Nucl Med 25:1383–1389.PubMedCrossRefGoogle Scholar
  28. 28.
    Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49: 113–128.CrossRefGoogle Scholar
  29. 29.
    Hsu AR, Cai W, Veeravagu A, Mohamedali KA, Chen K, Kim S, Vogel H, Hou LC, Tse V, Rosenblum MG, Chen X (2007) Multimodality molecular imaging of glioblastoma growth inhibition with vasculature-targeting fusion toxin VEGF121/rGel. J Nucl Med 48:445–454.PubMedGoogle Scholar
  30. 30.
    Cheng Z, Wu Y, Xiong Z, Gambhir SS and Chen X (2005) Near-infrared fluorescent RGD peptides for optical imaging of integrin αvβ3 expression in living mice. Bioconjugate Chem 16:1433–1444.CrossRefGoogle Scholar
  31. 31.
    Licha K, Debus N, Emig-Vollmer S, Hofmann B, Hasbach M, Stibenz D, Sydow S, Schirner M, Ebert B, Petzelt D, Buhrer C, Semmler W, Tauber R (2006) Optical molecular imaging of lymph nodes using a targeted vascular contrast agent. J Biomed Opt 4:41205.Google Scholar
  32. 32.
    Citrin D, Lee AK, Scott T, Sproull M, Menard C, Tofilon PJ, Camphausen K (2004) In vivo tumor imaging in mice with near-infrared labeled endostatin. Mol Cancer Ther 2004 3:481–488.PubMedGoogle Scholar
  33. 33.
    Bremer C, Tung H, Weissleder R (2001) In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 7:743–748.PubMedCrossRefGoogle Scholar
  34. 34.
    Kiessling F, Farhan N, Lichy M, Vosseler S, Heilmann M, Krix M, Bohlen P, Miller DW, Mueller MA, Semmler W, Fusenig NE, Delorme S (2004). Dynamic contrast enhanced magnetic resonance imaging rapidly indicates vessel regression in human squamous cell carcinomas grown in nude mice caused by VEGF-receptor 2 blockade with DC101. Neoplasia 6:213–223.Google Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  1. 1.Department of Experimental Molecular Imaging (ExMI), Helmholtz-InstituteRWTH-Aachen UniversityAachenGermany

Personalised recommendations