Glacier Inventory: A Case in Semiarid Chile

Part of the Geotechnologies and the Environment book series (GEOTECH, volume 3)


Glaciers are the most important water reservoirs found in the Andes. While the scientific community has conducted more extensive glaciological studies in southern Chile, it is only recently that attention has been focused on northern Chile. In the Chilean “Norte Chico” region, where glaciation is restricted to the highest summits, the sparse glacier network provides the majority of water to down-stream users during dry years. Here the economy is based on mining and agriculture, both of which depend on an intensive and reliable water source. Given the importance of glaciers to supply this water, it is surprising that few detailed glaciological studies have been conducted in this region. Just as the glaciers recede to higher summits, making water availability less reliable, the economic activity in this region is increasing; thus, glacier inventory is needed to aid Chilean policy makers in the decision making process. This chapter examines how remotely sensed imagery (ASTER and aerial photos) is being used to develop baseline glacier data in Norte Chico and to provide policy makers with scientific data for decision making. Finally, the chapter shows how GIS technology can integrate remote sensing processing results into a georeferenced database with a broader range of users than the raw data.


Glaciers Norte Chico Chile Glacier inventory Water resources GIS 



Special thanks to N Hoalst Pullen, MW Patterson and S MacDonell for their invaluable comments on earlier drafts of this manuscript.


  1. Aniya M (1988) Glacier inventory for the Northern Patagonia Icefield, Chile, and variations 1944/45 to 1985/86. Arct Alp Res 20:179–187CrossRefGoogle Scholar
  2. Aniya M, Naruse R, Casassa G, Rivera A (1999) Variations of Patagonian glaciers, South America, utilizing RADARSAT images. In: Proceedings of the international symposium on RADARSAT application development and research opportunity, Montreal, Canada, 13–15 Oct 1998Google Scholar
  3. Barcaza G (2009) Unidad de Glaciología y Nieves. Presentacion_Gonzalo_Barcaza_Mayo_2009.pdf. Accessed 1 Aug 2009
  4. Bown F, Rivera A, Acuña C (2008) Recent glacier variations at the Aconcagua basin, central Chilean Andes. Ann Glaciol 48:43–48CrossRefGoogle Scholar
  5. Braun M, Rau F, Simões J (2008) A GIS-based glacier inventory for the Antarctic Peninsula and the South Shetland Islands. A first case study on King George Island. Geosp Inf Sci 4(2):15–24CrossRefGoogle Scholar
  6. Carrasco J, Casassa G, Rivera A (2002) Meteorological and climatological aspects of the Southern Patagonia Ice Cap Patagonia. In: Casassa G, Sepulveda F, Sinclair R (eds) The Patagonian Icefields. A unique natural laboratory for environmental and climate change studies. Kluwer/Plenum, New York, NYGoogle Scholar
  7. Casassa G, Rivera A, Aniya M, Naruse R (2000) Características glaciológicas del Campo de Hielo Patagónico Sur. An Inst Patagonia, Ser Cienc Nat 28:5–22Google Scholar
  8. Casassa G, Rivera A, Aniya M, Naruse R (2002) Current knowledge of the Southern Patagonia Icefield. In: Casassa G, Sepulveda F, Sinclair R (eds) The Patagonian Icefields. A unique natural laboratory for environmental and climate change studies. Kluwer/Plenum, New York, NYGoogle Scholar
  9. Departamento de Geofísica, Universidad de Chile (2006) Estudio de la variabilidad climática en Chile para el siglo XXI. OtrosTextos/articles-39442_pdf_Estudio_texto.pdf. Accessed 11 Jan 2010
  10. Casassa G, Rivera A, Schwikowski M (2006) Glacier mass balance data for southern South America (30°S–56°S). In: Knight PG (ed) Glacier Science and Environmental Change, Blackwell, OxfordGoogle Scholar
  11. Casassa G, Haeberli W, Jones G, Kaser G, Ribstein P, Rivera A, Schneider C (2007) Current status of Andean glaciers. Glob Planet Change 59:1–9CrossRefGoogle Scholar
  12. Garín C (1987) Inventario de Glaciares de los Andes Chilenos desde los 18° a los 32° de Latitud Sur. Revista Geogr Norte Gd 14:35–48Google Scholar
  13. Ginot P, Kull C, Schwikowski M, Schotterer U, Gäggeler HW (2001) Effects of post-depositional processes on snow composition of a subtropical glacier (Cerro Tapado, Chilean Andes). J Geophys Res 106(D23):32375–32386CrossRefGoogle Scholar
  14. INE, Instituto Nacional de Estadísticas (2002) Censo Nacional de Población y Vivienda, Santiago, ChileGoogle Scholar
  15. IPCC (2007) Summ for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. contribution of working group I to the 4th assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  16. Kääb A, Paul F, Maisch M, Hoelzle M, Haeberli W (2002) The new remote sensing derived Swiss glacier inventory: II. First results. Ann Glaciol 34:362–366CrossRefGoogle Scholar
  17. Kull C, Grosjean M, Veit H (2002) Modelling modern and late pleistocene glacio-climatogological conditions in the North Chilean Andes (29°S–30°S). Clim Chan 52(3): 359–381CrossRefGoogle Scholar
  18. La Tercera-Orbe (2009) Consejo de ministros de Conama aprueba política nacional de glaciares. Accessed 1 Aug 2009
  19. Lemke P, Ren J, Alley R, Allison I, Carrasco J, Flato G, Fuji Y, Kaser G, Mote P, Thomas R, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. contribution of working group I to the 4th assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  20. Lliboutry L (1956) Nieves y Glaciares de Chile Fundamentos de Glaciología, 1st edn. Ediciones de la Universidad de Chile, SantiagoGoogle Scholar
  21. Marín J, Nicholson L, Rabatel A, Castebrunet H, Garrido R, Novoa E (2008) Glacier inventory of the upper Huasco River Basin, Norte Chico, Chile. AVH4 Conference The Andes: challenge for geosciences. Santiago de Chile 24–28 Nov 2008Google Scholar
  22. Miller M (1965) Inventory of terminal position changes in Alaskan Coastal Glaciers since the 1750’s. Proc Am Philos Soc 108 (3):257–273Google Scholar
  23. MOP, Ministerio de Obras Publicas (2004) Diagnóstico y Clasificación de los Cursos y Cuerpos de Agua según objetivos de calidad: Cuenca del Río Huasco. Santiago de Chile. Accessed 13 Jan 2010
  24. Müeller F, Caflish T, Müeller G (1976) Firn und Eis der Schweizer Alpen, Gletscherinventar, vdf-Verlag, ZürichGoogle Scholar
  25. Mueller F, Caflisch T, Mueller G (1977) Instructions for the compilation and assemblage of data for a World Glacier Inventory. Temporary technical secretariat for the World Glacier Inventory. Zurich, ETH ZurichGoogle Scholar
  26. Nicholson L, Marín J, Lopez D, Rabatel A, Bown F, Rivera A (2009) Glacier inventory of the upper Huasco valley, Norte Chico, Chile: glacier characteristics, glacier change and comparison to central Chile. Ann Glaciol 50(53):111–118CrossRefGoogle Scholar
  27. Paul F (2001) Evaluation of different methods for glacier mapping using Landsat TM. In eProceedings EARSeL Workshop on Remote Sensing of Land Ice and Snow, Dresden, 16.-17.6.2000. 1, 239–245Google Scholar
  28. Pellicciotti F, Helbing J, Rivera A, Favier V, Corripio J, Araos J, Sicart JE, Carenzo M (2008) A study of the energy balance and melt regime on Juncal Norte Glacier, semi-arid Andes of central Chile, using melt models of different complexity. Hydrol Process 22:3980–3997CrossRefGoogle Scholar
  29. Rabatel A, Castebrunet H, Favier V, Nicholson L. Behaviour of cold glaciers in the semi-arid Andes of Chile (29°S), results of a 6-year monitoring program. UnpublishedGoogle Scholar
  30. Racoviteanu A, Williams M, Barry R (2008) Optical remote sensing of glacier characteristics: a review with focus on the Himalaya. Sensors 8:3355–3383CrossRefGoogle Scholar
  31. Rau F, Mauz F, Vogt S, Singh Khalsa SJ, Raup B (2005) Illustrated GLIMS glacier classification manual; glacier classification guidance for the GLIMS glacier inventory. GLIMS regional center Antarctic Peninsula Version 1.0. Accessed 11 Jan 2010
  32. Raup B, Kieffer, Hugh H, Hare, Trent M, Kargel J (2000) Generation of data acquisition requests for the ASTER satellite instrument for monitoring a globally distributed target: glaciers. IEEE Trans Geosci Remote Sens 38(2):1105–1112CrossRefGoogle Scholar
  33. Rignot E, Rivera A, Casassa G (2003) Contribution of the patagonia icefields of South America to global sea level rise. Sci 302:434–437CrossRefGoogle Scholar
  34. Rivera A, Acuña C, Casassa G, Bown F (2002) Use of remotely sensed and field data to estimate the contribution of Chilean glaciers to eustatic sea-level rise. Ann Glaciol 34:367–372CrossRefGoogle Scholar
  35. Rivera A, Casassa G (2004) Ice elevation, areal, and frontal changes of glaciers from national park Torres Del Paine, Southern Patagonia icefiled. Arct Antarct Alp Res 36(4):379–389CrossRefGoogle Scholar
  36. Rosemblüth B, Casassa G, Fuenzalida H (1997) Recent temperature variations in southern south America. Intern J Climatol 17:67–85CrossRefGoogle Scholar
  37. Suslov VF (1978) Utilization of glacier inventory in the USSR water cadastre. Accessed 13 Jan 2010
  38. UNESCO (1970) Perennnial ice and snow masses. A guide for compilation and assemblage of data for a World Glacier Inventory: UNESCO/IAHS Technical Papers in Hydrol1Google Scholar
  39. Vaughan D, Marshall G, Connolley W, Parkinson C, Mulvaney R, Hodgson D, King J, Pudsey C, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Chan 60:243–274CrossRefGoogle Scholar
  40. Young G, Ommanney C (1984) Canadian glacier hydrology and mass balance studies; a history of accomplishments and recommendations for future work. Geogr Ann Ser A Phys Geogr 66(3):169–182CrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  1. 1.Centro de Estudios Avanzados en Zonas Áridas (CEAZA)La SerenaChile

Personalised recommendations