Observation and Geophysical Causes of Present-Day Sea-Level Rise

  • C. K. ShumEmail author
  • Chung-Yen Kuo


The 2007 IPCC Fourth Assessment Report (FAR) sea-level assessment has significantly narrowed the gap between the observations and the geophysical causes of sea-level rise than the 2001 IPCC Third Assessment Report (TAR). The observed present-day (1900–current) sea-level rise is approximately 1.8–2.2 mm/year. The unexplained discrepancy (observed compared with the sum of all known geophysical contributions to sea-level rise) dropped from 1.83 to 1.29 mm/year. A post-2007 IPCC FAR sea-level assessment study covering modern satellite measurement data span (2003–2008) indicates significant narrowing of the sea-level budget disagreement over IPCC TAR, to 0.44 mm/year. However, a review of more recent studies including the mountain glacier and ice-sheet mass balance estimates and the estimated sea-level fall from human impoundment of water in reservoirs reveal that the discrepancy is now up to 1.42 mm/year, drastically larger than the current assessment (0.44 mm/year). The unexplained sea-level signal represents 71% of the observed sea-level rise (∼2.0 mm/year). Major geophysical contributors to sea-level rise identified which potentially have the largest errors include the ice-sheet mass balance, the knowledge of glacial isostatic adjustment forward models underneath the ice-sheets and the ocean, mountain glaciers and ice caps, and the anthropogenic effect of human impoundment of water in reservoirs and dams. Integrated analysis and interpretation using modern satellite and in situ measurements could narrow the uncertainty between the observations and the explained contributions from each of the geophysical sources to sea-level rise.


Sea-level rise Global climate change Intergovernmental Panel for Climate Change 



Fourth Assessment Report


Third Assessment Report


United Nations Environment Program


World Meteorological Organization


glacial isostatic adjustment


Gravity Recovery and Climate Experiment


mechanical bathythermographs


permanent service for mean sea-level


last glacial melt



We acknowledge Philip Woodworth, UK’s Permanent Service for Mean Sea-Level (PSMSL), for providing the tide gauge records, NASA and CNES for the TOPEX/POSEIDON, Jason-1 radar altimetry data, ESA for the ERS-1/-2 and Envisat altimetry data, US Navy via NOAA’s Laboratory for Satellite Altimetry for the Geosat and GFO altimetry data, NASA and GFZ for the GRACE data via University of Texas Center for Space Research and JPL-PODAAC, M. Ishii at Frontier Research Center for Global Change, Japan, for the thermal sea-level data, D. Peliter, H. Wang, and P. Wu for providing the glacial isostatic adjustment models, and D. Wingham at University College London for the ERS-1/-2 altimetry derived Antarctic ­ice-sheet elevation data. This research is supported by grants from NASA and from the Ohio State University’s Climate, Water and Carbon Program. Chung-yen Kuo is supported by grants from the National Cheng Kung University, and from the National Science Council, Taiwan.


  1. Abdalati W, Krabill W, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Wright W, Yungel J (2001) Outlet glacier and margin elevation changes: near-coastal thinning of the Greenland ice sheet, J Geophys. Res 106(D24): 33, 729–33, 742Google Scholar
  2. Antonov J, Levitus S, Boyer T (2005) Steric variability of the world ocean, 1955–2003. Geophys Res Lett 32(12):L12602. doi: 10.1029/2005GL023112 CrossRefGoogle Scholar
  3. Arendt A, Echelmeyer K, Harrison W, Lingle C, Valentine V (2002) Rapid wastage of Alaska glaciers and their contribution to rising sea-level. Science 297:383–386CrossRefGoogle Scholar
  4. Bindoff N, Willebrand J (Coordinating Lead Authors) Artable V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quere C, Levitus S, Nojiri Y, Shum CK, Talley L, Unnikrishnan A (Lead Authors) and 50 contributing authors (2007)  Chapter 5: observations: oceanic climate change and sea-level, Intergovernmental Panel Climate Committee (IPCC) Working Group 1 (WG1) Fourth Assessment Report
  5. Cazenave A, Nerem R (2004) Present-day sea-level change: observations and causes. Rev Geophys 42:RG3001. doi: 10.1029/2003RG000139 CrossRefGoogle Scholar
  6. Cazenave A (2009) Sea-level budget after IPCC AR4: a reevaluation from satellite altimetry, GRACE and Argo data over 2003–2008, AAAS Annual Meeting: Global Sea-Level Rise: Observation, Causes, and Prediction, Chicago, Illinois, Feb. 12–16Google Scholar
  7. Cazenave A, Shum C (2009) Sea-level budget after IPCC AR4: a reevaluation from satellite altimetry, GRACE and Argo data over 2003–2008, Joint IPCC-WCRP-IGBP Workshop: New Science Directions and Activities Relevant to the IPCC AR5, Hawaii, March 3–6Google Scholar
  8. Chambers D (2006a) Observing seasonal steric sea-level variations with GRACE and satellite altimetry. J Geophys Res 111:C03010. doi: 10.1029/2005JC002914 CrossRefGoogle Scholar
  9. Chambers D (2006b) Evaluation of new GRACE time-variable gravity data over the ocean. Geophys Res Letts 33:L17603. doi:10, 1029/2006GL027296CrossRefGoogle Scholar
  10. Chambers DP, Tamisiea ME, Nerem RS, Ries JC (2007) Effects of ice melting on GRACE observations of ocean mass trends. Geophys Res Lett 34:L05610. doi: 10.1029/2006GL029171 CrossRefGoogle Scholar
  11. Chao B, Wu Y, Li Y (2008) Impact of artificial reservoir water impoundment on global sea-level. Science. doi: 10.1126/science.1154580 Google Scholar
  12. Chen J, Wilson C, Blankenship D, Tapley B (2006a) Antarctic mass rates form GRACE. Geophys Res Lett 33:L11502. doi: 10.1029/2006GL026369 CrossRefGoogle Scholar
  13. Chen J, Wilson C, Tapley B (2006b) Satellite gravity measurements confirm accelerated melting of Greenland Ice Sheet. Science 313:1958. doi: 10.1126/science.1129007 CrossRefGoogle Scholar
  14. Church J, Gregory J, Huybrechts P, Kuhn M, Lambeck K, Nhun M, Qin D, Woodworth P, 26 others (2001)  Chapter 11: change in sea-level, Intergovernmental Panel Climate Committee (IPCC) Working Group 1 (WG1) Third Assessment Report
  15. Church J, White N, Coleman R, Lambeck K, Mitrovica J (2004) Estimates of the regional distribution of sea-level rise over the 1950–2000 period. J Climate 17:2609–2625CrossRefGoogle Scholar
  16. Cogley JG (2009) Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann Glaciol 50:96–100Google Scholar
  17. Crowell M, Edelman S, Coulton K, McAfee S (2007) How many people live in coastal areas? J Coast Res 23:5. doi: 10.2112/07A-0017.1 Google Scholar
  18. Davis C, Li Y, McConnell J, Frey M, Hanna E (2005) Snowfall-driven growth in east Antarctic Ice Sheet mitigates recent sea-level rise. Science 10.1126/science.1110662Google Scholar
  19. Dixon T, Amelung F, Ferretti A, Novali F, Rocca F, Dokka R, Sella G, Kim SW, Wdowinski S, Whitman D (2006) Subsidence and flooding in New Orleans, Nature, doi:10.1038/441587aGoogle Scholar
  20. Domingues C, Church J, White N, Gleckler P, Wijffels S, Barker P, Dunn J (2008) Upper-ocean warming and sea-level rise, Nature 453, doi:10.1038/nature07080Google Scholar
  21. Donnelly JP, Cleary P, Newby P, Ettinger R (2004) Coupling instrumental and geological records of sea-level change: evidence from southern New England of an increase in the rate of sea-level rise in the late 19th century. Geophys Res Lett 31:L05203. doi: 10.1029/2003GL018933 CrossRefGoogle Scholar
  22. Douglas B (2001) In: Douglas B, Kearney M, Leatherman S (eds) Sea-level rise: history and consequences, sea-level change in the era of the recording tide gauge. Academic, San DiegoGoogle Scholar
  23. Duan XJ, Guo JY, Shum CK, van der Wal W (2009) On the post-processing removal of correlated errors in GRACE temporal gravity field solutions. J Geodesy. doi: 10.1007/s00190-009-0327-0 Google Scholar
  24. Dyurgerov M, Meier M (2005) Glaciers and changing Earth system: a 2004 snapshot. INSTAAR, BoulderGoogle Scholar
  25. Gehrels W, Marshall M, Larsen G, Kirby J, Eiríksson J, Heinemeier J, Shimield T (2006) Rapid sea-level rise in the North Atlantic Ocean since the first half of the nineteenth century. The Holocene 16:949–965CrossRefGoogle Scholar
  26. Gouretski V, Koltermann K (2007) How much is the ocean really warming? Geophys Res Lett 34:L01610. doi: 10.1029/2006GL027834 CrossRefGoogle Scholar
  27. Gregory J, Lowe J, Tett S (2006) Simulated global-mean sea-level changes over the last half-millennium. J Climate 19:4,576–4,591. doi: 10.1175/JCLI3881.1 CrossRefGoogle Scholar
  28. Guo JY, Shum C (2009) Application of the cos-Fourier expansion to data transformation between different latitude-longitude grids. Comput Geosci 35:1439–1444CrossRefGoogle Scholar
  29. Guo JY, Duan XJ, Shum CK (2010) Non-isotropic filtering and leakage reduction for determining mass changes over land and ocean using GRACE data. Geophys J Int 181: 290–302. doi: 10.111/j.1365-246X.2010.04534.xGoogle Scholar
  30. Han S, Shum C, Jekeli C, Kuo C, Wilson C, Seo K (2005) Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement. Geophys J Int 163(1):18–25. doi: 10.1111/j.1365-246X.2005.02756.x CrossRefGoogle Scholar
  31. Helsen M, van den Broeke M, van de Wal R, van de Berg WJ, Meijaard E, Davis C, Li YH, Goodwin I (2008) Elevation changes in Antarctica mainly determined by accumulation variability. Sciencexpress 10.1126/science.1153894, 1–4, MayGoogle Scholar
  32. Hinrichsen, D (2009) Ocean planet in decline, People and coasts and oceans, Scholar
  33. Holgate S (2007) On the decadal rates of sea-level change during the twentieth century. Geophys Res Lett 34:L01602. doi: 10.1029/2006GL028492 CrossRefGoogle Scholar
  34. IPCC (2007) Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical Science Basis, Summary for PolicymakersGoogle Scholar
  35. Ishii M, Kimoto M (2009) Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J Oceanogr 65:287–299CrossRefGoogle Scholar
  36. Jevrejeva S, Moore JC, Grinsted A, Woodworth PL (2008) Recent global sea-level acceleration started over 200 years ago? Geophys Res Lett 35:L08715. doi: 10.1029/2008GL03611 CrossRefGoogle Scholar
  37. Johannessen O, Khvorostovsky K, Miles M, Bobylev L (2005) Recent ice-sheet growth in the interior of Greenland. Science 310:1013–1016CrossRefGoogle Scholar
  38. Kaser G, Cogley J, Dyurgerov M, Meier M, Ohmura A (2006) Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophys Res Lett 33:L19501. doi: 10.1029/2006GL027511 CrossRefGoogle Scholar
  39. Krabill W, Hanna E, Huybrechts P, Abdalati W, Cappelen J, Csatho B, Frederick E, Manizade S, Martin C, Sonntage J, Swift R, Thomsa R, Yungel J (2004) Greenland ice sheet: increased coastal thinning. Geophys Res Lett 31:L24402. doi: 10.1029/2004GL021533 CrossRefGoogle Scholar
  40. Kuo C (2006) Determination and characterization of 20th century global sea-level rise, OSU Report 478, ix + 158 ppGoogle Scholar
  41. Kuo C, Shum C, Braun A, Cheng K, Yi Y (2008) Vertical motion determined using satellite ­altimetry and tide gauges, Special Issue : satellite altimetry over land and coastal zones: challenges and applications. Terr Atmos Ocean Sci 19(1–2):21–35. doi: 10.3319/TAO.2008.19.1-2.21(SA CrossRefGoogle Scholar
  42. Lambeck K, Esat T, Potter E (2002) Links between climate and sea-levels for the past three million years. Nature 419:199–206CrossRefGoogle Scholar
  43. Lemke P, Ren J, Alley R, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas R, Zhang TJ, and 44 contributing authors (2007)  Chapter 4; Observations: changes in snow, ice and frozen ground, IPCC WG1 Fourth Assessment Report
  44. Lettenmaier D, Milly C (2009) Land waters and sea-level. Nat Geosci 2:452–454CrossRefGoogle Scholar
  45. Leuliette EW, Miller L (2009) Closing the sea-level rise budget with altimetry, Argo, and GRACE. Geophys Res Lett 36:L04608. doi: 10.1029/2008GL036010 CrossRefGoogle Scholar
  46. Levitus S, Antonov I, Boyer T, Stephens C (2000) Warming of the world ocean. Science 287:2225–2229CrossRefGoogle Scholar
  47. Luthcke S, Zwally H, Abdalati W, Rowlands D, Ray R, Nerem R, Lemoine F, McCarthy J, Chinn D (2006) Recent ice sheet mass loss by drainage system from satellite gravity observations. Science. doi: 10.1126/science.1130776 Google Scholar
  48. Meier M, Dyurgerov M, Rick U, O’Neel S, Pfeffer W, Anderson R, Anderson S, Glazovsky A (2007) Glaciers dominate eustatic sea-level rise in the 21st century, Science, doi: 10.1126/science.1143906Google Scholar
  49. Merrifield MA, Merrifield ST (2009) An anomalous recent acceleration of global sea-level rise. J Climate, doi:10.1175/2009JCL12985.1, 2009Google Scholar
  50. Miller L, Douglas B (2006) On the rate and causes of twentieth century sea-level rise. Phil Trans R Soc A, doi:10.1098/rsta.2006.1738Google Scholar
  51. Milly P, Cazenave A, Gennero M (2003) Contribution of climate-driven change in continental water storage to recent sea-level rise. Proc Natl Acad Sci 100(23):13158–13161CrossRefGoogle Scholar
  52. Milly PCD, Cazenave A, Famiglietti J, Gornitz V, Laval K, Lettenmaier D, Sahagian D, Wahr J, Wilson C (2009) Terrestrial water storage contributions to sea-level rise and variability, Proceedings of the WCRP workshop ‘Understanding sea-level rise and variability’. In: Church J, Woodworth P, Aarup T, Wilson S, et al., Blackwell Publishing, Inc., New YorkGoogle Scholar
  53. Munk W (2002) Twentieth century sea-level: an enigma. Proc Natl Acad Sci 99(10):6550–6555CrossRefGoogle Scholar
  54. Ngo-Duc T, Laval K, Polcher Y, Lombard A, Cazenave A (2005) Effects of land water storage on the global mean sea-level over the last half century. Geophys Res Lett 32:L09704. doi: 10.1029/2005GL022719 CrossRefGoogle Scholar
  55. Nicholls RJ (2002) Rising sea-level: potential impacts and responses. In: Hester RE, Harrison RM (eds) Issues in environmental science and technology; global environmental change, vol 17., pp 83–107Google Scholar
  56. Nicholls RJ (2007) The impacts of sea-level rise. Ocean Challenge 15(1):13–17Google Scholar
  57. Overpeck J, Otto-Bliesner B, Miller GH, Muhs DR, Alley RB, Kiehl JT (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311:1747–1750CrossRefGoogle Scholar
  58. Paulson A (2006) Inference of the Earth’s mantle viscosity from post-glacial rebound, PhD Dissertation, University of ColoradoGoogle Scholar
  59. Peltier W (2001) Global glacial isostatic adjustment and modern instrumental records of relative sea-level history. In: Douglas B, Kearney M, Leatherman S (eds)., Sea-level rise: history and consequences,  Chapter 4. Academic Press, New York, 65–93
  60. Peltier W (2004) Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149CrossRefGoogle Scholar
  61. Peltier W (2009) Closure of the budget of global sea-level rise over the GRACE era: the importance and magnitudes of the required corrections for global glacial isostatic adjustment, Quatern Sci Rev, 28(17–18), 1658–1674Google Scholar
  62. Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315:368–370CrossRefGoogle Scholar
  63. Ramillien G, Lombard A, Cazenave A, Ivins E, Llubes M, Remy F, Biancale R (2006) Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Global Planet Change 53(3):198–208CrossRefGoogle Scholar
  64. Ramillien G, Bouhours S, Lombard A, Cazenave A, Flechtner F, Schmidt R (2008) Land water contributions from GRACE to sea-level rise over 2002–2006. Global Planet Change 60:381–392CrossRefGoogle Scholar
  65. Rignot E, Thomas R (2002) Mass balance of polar ice sheets. Science 297:1502–1506CrossRefGoogle Scholar
  66. Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science 311:986–990CrossRefGoogle Scholar
  67. Rignot E, Bamber JL, van den Broeke MR, Davis C, Li YH, van de Berg WJ, Meijaard EV (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modeling. Nature 1:106–110Google Scholar
  68. Schmidt M, Han C, Kusche J, Sanchez L, Shum C (2006) Regional high-resolution spatio-temporal gravity modeling from GRACE data using spherical wavelets. Geophys Res Lett 33:L08403. doi: 10.1029/2005GL025509 CrossRefGoogle Scholar
  69. Shepherd A, Wingham D (2007) Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science 315:1529–1532. doi: 10.1126/science.1136776 CrossRefGoogle Scholar
  70. Shum C, Ries J, Tapley B (1995) The accuracy and applications of satellite altimetry. Geophys J Int 121:321–336CrossRefGoogle Scholar
  71. Shum C, Yi Y, Cheng K, Kuo C, Braun A, Calmant S, Chamber D (2003) Calibration of Jason-1 altimeter over Lake Erie. Marine Geodesy 26:335–354. doi: 10.1080/01490410390253487 CrossRefGoogle Scholar
  72. Shum C, Kuo C, Guo J (2008) Role of Antarctic ice mass balances in present-day sea-level change. Polar Sci 2:149–161CrossRefGoogle Scholar
  73. Shum C, Cazenave A, Kuo CY (2009) Quantifying geophysical causes of present-day sea-level rise. Joint IPCC-WCRP-IGBP Workshop: New Science Directions and Activities Relevant to the IPCC AR5, Hawaii, March 3–6Google Scholar
  74. Siddall M, Stocker TS, Clark PU (2009) Constraints on future sea-level rise from past sea-level change. Nat Geosci, doi:10.1038/NGE0587Google Scholar
  75. Slobbe DC, Ditmar P, Lindenbergh RC (2009) Estimating the rates of mass change, ice volume change and snow volume change in Greenland from ICESat and GRACE data. Geophys J Int 176:95–106CrossRefGoogle Scholar
  76. Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewitson B, Hoskins BJ, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker TF, Whetton P, Wood RA, Wratt D (2007) Technical summary. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, pp 21–84Google Scholar
  77. Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi: 10.1029/2005GL025285 CrossRefGoogle Scholar
  78. Tapley BD, Bettadpur S, Ries J, Thompson P, Watkins M (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505CrossRefGoogle Scholar
  79. Thomas R, Rignot E, Casassa G, Kanagaratnam P, Acuna C, Akins T, Brecher H, Frederrick E, Gogineni P, Krabill W, Manizade S, Ramamoorthy H, Rivera A, Russell R, Sonntag J, Swift R, Yungel J, Zwally J (2004) Accelerated sea-level rise from West Antarctica. Science 306(5694):255–258CrossRefGoogle Scholar
  80. Velicogna I, Wahr J (2006a) Acceleration of Greenland ice mass loss in spring 2004. Nature 443:329–331CrossRefGoogle Scholar
  81. Velicogna I, Wahr J (2006b) Measurements of time-variable gravity show mass loss in Antarctica. Science 311:1754–1756CrossRefGoogle Scholar
  82. Wahr J, Han H, Trupin A (1995) Predictions of vertical uplift caused by changing polar ice volumes on a viscoelastic Earth. Geophys Res Lett 22(8):977–980CrossRefGoogle Scholar
  83. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30,205–30,229CrossRefGoogle Scholar
  84. Wahr J, Swenson S, Velicogna I (2006) Using GRACE to estimate changes in land water storage: present limitations and future potential, Proc. Understanding Sea-level Rise and Variability Workshop, Paris, France, 6–9 JuneGoogle Scholar
  85. Warrick R, Oerlemans J (1990) Sea-level rise. In: Houghton J, Jenkins G, Ephraums J (eds) Climate Change: the IPPC scientific assessment. Cambridge University Press, Cambridge, pp 257–281Google Scholar
  86. Warrick RA, Provost Le C, Meier M, Oerlemans J, Warrick RA, Provost Le C, Meier M, Oerlemans J, Woodworth P (1996) Changes in sea-level. In: In Climate change 1995, Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  87. Wijffels SE, Willis J, Domingues CM, Barker P, White NJ, Gronell A, Ridgway K, Church JA (2008) Changing expendable bathythermograph fall rates and their impact on estimates of thermosteric sea-level rise. J Climate 21:5657–5672CrossRefGoogle Scholar
  88. Willis JK, Lyman JM, Johnson GC, Gilson J (2007) Correction to “Recent cooling of the upper ocean”. Geophys Res Lett 34:L16601. doi: 10.1029/2007GL030323 CrossRefGoogle Scholar
  89. Willis JK, Chambers DP, Nerem RS (2008) Assessing the globally averaged sea-level budget on seasonal to interannual timescales. J Geophys Res 113:C06015. doi: 10.1029/2007JC004517 CrossRefGoogle Scholar
  90. Wingham D, Shepherd A, Muir A, Marshall G (2006) Mass balance of the Antarctic ice sheet. Phil Trans R Soc A 364:627–1635. doi: 10.1098/rsta.2006.1792 CrossRefGoogle Scholar
  91. Woodworth P, Player R (2003) The permanent service for mean sea-level: an update to the 21st century. J Coastal Res 19:287–295Google Scholar
  92. Woodworth P, Jevrejeva S, Holgate S, Church J, White N, Gehrels R (2009) A review of the ­evidence for the recent accelerations of sea-level on multi-decade and century timescales. Int. J. Climatol. 29: 777–789Google Scholar
  93. World Climate Research Programme (WCRP) Workshop Summary Statement (2006 June) Understanding the sea-level rise and variability. UNESCO, Paris, FranceGoogle Scholar
  94. Zwally H, Giovinetto M, Li J, Cornejo H, Beckley M, Brenner A, Saba J, Yi D (2005) Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002, J Glaciology, 51 (175): 509–527Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Division of Geodetic Sciences, School of Earth SciencesOhio State UniversityColumbusUSA
  2. 2.Department of GeomaticsNational Cheng Kung UniversityTaiwanTaiwan

Personalised recommendations