Advertisement

Metal Tolerant Mycorrhizal Plants: A Review from the Perspective on Industrial Waste in Temperate Region

  • Katarzyna TurnauEmail author
  • Przemysław Ryszka
  • Grzegorz Wojtczak
Chapter

Abstract

The chapter summarizes research carried out on the role of mycorrhizal fungi in phytoremediation of heavy-metal-rich wastes in temperate regions. Symbiotic fungi are an important component of soil microbiota, especially under harsh conditions. Properly developed mutual symbiosis enhances the survival of plants in polluted areas by improving nutrient acquisition and water relations. In addition, mycorrhizal fungi were found to play an important role in heavy metal detoxification and the establishment of vegetation in strongly polluted areas. Fungal strains isolated from old zinc wastes also decrease heavy metal uptake by plants growing on metal rich substrata, limiting the risk of increasing the levels­ of these elements in the food chain. The effectiveness of the bioremediation techniques depends on the appropriate selection of both the plant and the fungal partners. Plants conventionally introduced in such places disappear relatively soon, while those appearing during natural succession are better adapted to harsh conditions. Symbiotic partners selected on the basis of such research are often the best choice for future phytoremediation technologies. Moreover, mycorrhizas of different types are also helpful in substratum toxicity monitoring. Further improvements can be obtained by optimization of diverse microbiota including various groups of rhizospheric bacteria and shoot endophytes.

Keywords

Heavy metals industrial wastes phytoremediation phytostabilisation phytoextraction 

Notes

Acknowledgments

We greatly acknowledge Dr. Anna Jurkiewicz (Aarhus University, DK) for linguistic comments on this manuscript. This work was supported by COST Action 870 entitled “From production to application of arbuscular mycorrhizal fungi in agricultural systems: a multidisciplinary approach” and by the Polish Ministry of Science and Higher Education (SPUB DWM/N81/COST/2008).

References

  1. Aldag R, Strzyszcz Z (1980) Inorganic and organic nitrogen compounds in carbonaceous ­phyllosilicates of spoils with regard to forest reclamation. Reclam Rev 3:69–73Google Scholar
  2. Aloui A, Recorbet G, Gollotte A, Robert F, Valot B, Gianinazzi-Pearson V, Aschi-Smiti S, Dumas-Gaudot E (2009) On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study. Proteomics 9:420–433CrossRefPubMedGoogle Scholar
  3. Azcón R, Medina A, Roldán A, Biró B, Vivas A (2009a) Significance of treated agrowaste residue and autochthonous inoculates (Arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structure and phytoextraction to remediate soils contaminated with heavy metals. Chemosphere 75:327–334CrossRefPubMedGoogle Scholar
  4. Azcón R, Peralvarez MD, Biro B, Roldan A, Ruiz-Lozano JM (2009b) Antioxidant activities and metal acquisition in mycorrhizal plants growing in a heavy-metal multicontaminated soil amended with treated lignocellulosic agrowaste. Appl Soil Ecol 41:168–177CrossRefGoogle Scholar
  5. Baker AJM (1987) Metal tolerance. New Phytol 106:93–111CrossRefGoogle Scholar
  6. Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, FLGoogle Scholar
  7. Bakker MI, Vorenhout M, Sijm DTHM, Kollofel C (1999) Dry deposition of atmospheric ­polycyclic hydrocarbons in three Plantago species. Environ Toxicol Chem 18:2289–2294Google Scholar
  8. Baranowska-Morek A, Wierzbicka M (2004) Localization of lead in the root tip of Dianthus carthusianorum. Acta Biol Cracov Ser Bot 46:45–56Google Scholar
  9. Barbosa RMT, Almeida AAF, Mielke MS, Loguercio LL, Mangabeira PAO, Gomes FP (2007) A physiological analysis of Genipa americana L.: a potential phytoremediator tree for chromium polluted watersheds. Environ Exp Bot 61:264–271CrossRefGoogle Scholar
  10. Baroni F, Boscagli A, Protano G, Riccobono F (2000) Antimony accumulation in Achillea ­ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environ Pollut 109:347–352CrossRefPubMedGoogle Scholar
  11. Bassi R, Sharma SS (1993) Proline accumulation in wheat seedlings exposed to zinc and copper. Phytochemistry 33:1339–1342CrossRefGoogle Scholar
  12. Bradshaw AD, McNeilly T (1991) Evolutionary response to global climatic change. Ann Bot – Lond 67:5–14Google Scholar
  13. Buwalda JG, Goh KM (1982) Host-fungus competition for carbon as a cause of growth depression in vesicular-arbusculr mycorrhizal ryegrass. Soil Biol Biochem 14:103–107CrossRefGoogle Scholar
  14. Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161CrossRefGoogle Scholar
  15. Chen C, Dickman MB (2005) Proline suppresses apoptosis in the fungal pathogen Colleotrichum trifolii. Proc Natl Acad Sci USA 102:3459–3464CrossRefPubMedGoogle Scholar
  16. Chern ECW, Tsai AI, Gunseitan OA (2007) Deposition of glomalin related soil protein and sequestered toxic metals into watersheds. Environ Sci Technol 41:3566–3572CrossRefPubMedGoogle Scholar
  17. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneis: roles in heavy metal ­detoxification and homeostatsis. Annu Rev Plant Physiol 53:159–182Google Scholar
  18. Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160CrossRefPubMedGoogle Scholar
  19. Costa G, Morel JL (1994) Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiol Biochem 32:561–570Google Scholar
  20. Cui M, Nobel PS (1992) Nutrient status, water uptake and gas exchange for three desert succulents infected with mycorrhizal fungi. New Phytol 122:643–649CrossRefGoogle Scholar
  21. Dawson TE (1993) Hydraulic lift and water use by plants: implications for water balance, ­performance, and plant-plant interactions. Oecologia 95:565–574Google Scholar
  22. DeMars BG, Boerner RJ (1996) Vesicular arbuscular mycorrhizal development in the Brassicaceae in relation to plant life span. Flora 191:179–189Google Scholar
  23. Dmowski K (2000) Environmental monitoring of heavy metals with magpie (Pica pica) feathers – an example of Polish polluted and control areas. In: Market B, Friese P (eds) Trace elements in the environment. Elsevier, AmsterdamGoogle Scholar
  24. Driver JD, Holben WE, Rillig MC (2005) Characterization of glomalin as a hyphal wall ­component of arbuscular mycorrhizal fungi. Soil Biol Biochem 37:101–106CrossRefGoogle Scholar
  25. Ernst WHO (2005) Phytoextraction of mine wastes – options and impossibilities. Chem Erde Geochem 65:29–42CrossRefGoogle Scholar
  26. Ferrol N, Gonzales-Guerrero M, Valderaz A, Benabdellah K, Azcon-Aguillar C (2009) Survival strategies of arbuscular mycorrhizal fungi in Cu-polluted environments. Phytochemistry Rev 8:551–559CrossRefGoogle Scholar
  27. Fester T, Hause G (2005) Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15:373–379Google Scholar
  28. Fitter AH, Hay RKM (1987) Environmental physiology of plants. Academic, LondonGoogle Scholar
  29. Gadd GM (1993) Interaction of fungi with toxic metals. New Phytol 124:25–60CrossRefGoogle Scholar
  30. Gadkar V, Rillig MC (2006) The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiol Lett 263:93–101CrossRefPubMedGoogle Scholar
  31. Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121:151–159CrossRefGoogle Scholar
  32. George E, Häussler KU, Vetterlein D, Gorgus E, Marschner H (1992) Water and nutrient ­translocation by hyphae of Glomus mosseae. Can J Bot 70:2130–2137CrossRefGoogle Scholar
  33. Gonzales-Chavez MC, Carrillo-Gonzales R, Gutierres-Castorena MC (2009) Natural attenuation in a slag heap contaminated with cadmium. The role of plants and arbuscular fungi. J Hazard Mater 161:1288–1298CrossRefGoogle Scholar
  34. Gonzales-Chavez MC, Carrillo-Gonzales R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323CrossRefGoogle Scholar
  35. Gonzales-Chavez MC, D’Haen J, Vangronsveld BJ, Dodd JC (2002) Copper sorption and ­accumulation by the extramatrical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant Soil 240:287–297CrossRefGoogle Scholar
  36. Gonzales-Guerrero M, Melville LH, Ferrol N, Lott JNA, Azcon-Aguilar C, Peterson RL (2008) Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can J Microbiol 54:103–110CrossRefGoogle Scholar
  37. Grodzińska K, Korzeniak U, Szarek-Łukaszewska G, Godzik B (2000) Colonization of zinc mine spoils in southern Poland – preliminary studies on vegetation, seed rain and seed bank. Fragm Flor Geobot 45:123–145Google Scholar
  38. Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47:453–467CrossRefPubMedGoogle Scholar
  39. Hallett P, Feeney DS, Bengough AG, Rillig M, Scrimgeour CM, Young IM (2009) Disentangling the impact of AM fungi versus roots on soil structure and water transport. Plant Soil 314:183–196CrossRefGoogle Scholar
  40. Hall JL (2002) Cellular mechanisms for heavy metal detoxification. J Exp Bot 53:1–11CrossRefPubMedGoogle Scholar
  41. Hamelin J, Fromin N, Tarnawski S, Teyssier-Cuvelle S, Aragno M (2002) nifH gene diversity in the bacterial community associated with the rhizosphere of Molinia coerulea, an ­oligonitrophilic perennial grass. Environ Microbiol 4:477–481CrossRefPubMedGoogle Scholar
  42. Hoffmann AA, Parsons PA (1991) Evolutionary genetics and environmental stress. Oxford University Press, OxfordGoogle Scholar
  43. Jamal S, Iqbal MZ, Athar M (2006) Effect of aluminium and chromium on the growth and ­germination of mesquite (Prosopis juliflor swartz.) DC. Int J Environ Sci Tech 3:173–176Google Scholar
  44. Janouskova M, Pavlikova D, Vosatka M (2006) Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. Chemosphere 65:1959–1965CrossRefPubMedGoogle Scholar
  45. Jasper DA, Abbott LK, Robson AD (1989) Hyphae of a vesicular-arbuscular mycorrhizal fungus maintain infectivity in dry soil, except when the soil is disturbed. New Phytol 112:101–107CrossRefGoogle Scholar
  46. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16Google Scholar
  47. Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal ­mycelium. Plant Soil 226:227–234CrossRefGoogle Scholar
  48. Joner EJ, Leyval C (1997) Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol 138:353–360CrossRefGoogle Scholar
  49. Jurkiewicz A, Orłowska E, Anielska T, Godzik B, Turnau K (2004) The influence of mycorrhiza and EDTA application on heavy metal uptake by different maize varieties. Acta Biol Cracov Ser Bot 46:7–18Google Scholar
  50. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press, Boca Raton, FLGoogle Scholar
  51. Kaldorf M, Kuhn AJ, Schroder WH, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728CrossRefGoogle Scholar
  52. Kapoor A, Virarghavan T (1995) Fungal biosorption – an alternative treatment option for heavy metal bearing wastewater – a review. Bioresour Technol 53:195–206Google Scholar
  53. Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of ­photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244CrossRefGoogle Scholar
  54. Keightley JA, Li S, Kinters M (2004) Proteomic analysis of oxidative stress-resistance cells. Mol Cell Proteomics 3:167–175PubMedGoogle Scholar
  55. Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207CrossRefPubMedGoogle Scholar
  56. Kieffer P, Dommes J, Hoffman L, Hausman JF, Renaut J (2008) Quantitative changes in protein expression of cadmium exposed poplar plants. Proteomics 8:2514–2530CrossRefPubMedGoogle Scholar
  57. Krebs W, Brombacher C, Bosshard PP, Bachofen R, Brandl H (1997) Microbial recovery of metals from solids. FEMS Microbiol Rev 20:605–617CrossRefGoogle Scholar
  58. Lacombe S, Bradley RL, Harnel C, Beaulieu C (2009) Do tree-based intercropping systems increase the diversity and stability of soil microbial communities? Agric Ecosyst Environ 131:25–31CrossRefGoogle Scholar
  59. Lafferty Doty S (2008) Enhancing phytoremediation through the use of transgenics and ­endophytes. New Phytol 179:318–333CrossRefGoogle Scholar
  60. Lanfranco L, Bolchi A, Cesale Ross E, Ottonello S, Bonfante P (2002) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol 130:58–67CrossRefPubMedGoogle Scholar
  61. Leyval C, Joner EJ, del Val C, Haselwandter K (2002) Potential of arbuscular mycorrhizal fungi for bioremediation. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. From genes to bioproducts. Birkhäuser Verlag, BaselGoogle Scholar
  62. Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal ­colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153CrossRefGoogle Scholar
  63. Lingua G, Franchin C, Todeschini V, Castiglione S, Biondi S, Burlando B, Parravicini V, Torrigiani P, Berta G (2008) Arbuscular mycorrhizal fungi differencially affect the response to high zinc concentrations of two registered poplar clones. Environ Pollut 153:137–147CrossRefPubMedGoogle Scholar
  64. Liu Y, Zhu YG, Chen BD, Christie P, Li XL (2005) Yield and arsenate uptake of arbuscular ­mycorrhizal tomato colonized by Glomus mosseae BEG167 in a spiked soil under greenhouse conditions. Environ Int 31:867–873CrossRefPubMedGoogle Scholar
  65. Lopes de Andrade SA, Dias da Silveira AP, Jorge RA, Ferreira de Abreu M (2008) Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza. Int J Phytoremediat 10:1–13CrossRefGoogle Scholar
  66. Manceau A, Nagy KL, Marcus MA, Lanson M, Geoffroy N, Jacquet T, Kripitchikova T (2008) Formation of metalic copper nanoparticles at the soil-root interface. Environ Sci Technol 42:1766–1772CrossRefPubMedGoogle Scholar
  67. Morley GF, Gadd GM (1995) Sorption of toxic metals by fungi and clay minerals. Mycol Res 99:1429–1438CrossRefGoogle Scholar
  68. Mullen MD, Wolf DC, Beveridge TJ, Bailey GW (1992) Sorption of heavy metals by the soil fungi Aspergillus niger and Mucor rouxii. Soil Biol Biochem 24:129–135CrossRefGoogle Scholar
  69. Nadian H, Smith SE, Alston AM, Murray RS (1997) Effects of soil compaction on plant growth, phosphorus uptake and morphological characteristics of vesicular-arbuscular mycorrhizal colonization of Trifolium subterraneum. New Phytol 135:303–311CrossRefGoogle Scholar
  70. Negri MC, Gatliff EG, Quinn JJ, Hinchman RR (2003) Root development and rooting at depth. In: Mc Cutcheon SC, Schnoor JL (eds) Phytoremediation and control of contaminants. Wiley, HobokenGoogle Scholar
  71. Newsham KK, Watkinson AR (1998) Arbuscular mycorrhizas and the population biology of grasses. In: Cheplick GP (ed) Population biology of grasses. Cambridge University Press, CambridgeGoogle Scholar
  72. Olko A, Abratowska A, Żyłkowska J, Wierzbicka M, Tukiendorf A (2008) Armeria maritima from a calamine heap – Initial studies on physiologic-metabolic adaptations to metal-enriched soil. Ecotox Environ Safe 69:209–218CrossRefGoogle Scholar
  73. Orłowska E, Jurkiewicz A, Anielska T, Godzik B, Turnau K (2005a) Influence of different ­arbuscular mycorrhizal fungal (AMF) strains on heavy metal uptake by Plantago lanceolata L. Pol Bot Stud 19:65–72Google Scholar
  74. Orłowska E, Mesjasz-Przybylowicz J, Przybylowicz W, Turnau K (2008) Nuclear microprobe studies of elemental distribution in mycorrhizal and nonmycorrhizal roots of Ni-hyperaccumulator Berkheya coddii. X-ray Spectrom 37:129–132CrossRefGoogle Scholar
  75. Orłowska E, Ryszka P, Jurkiewicz A, Turnau K (2005b) Effectiveness of arbuscular mycorrhizal fungal (AMF) strains in colonisation of plants involved in phytostabilisation of zinc wastes. Geoderma 129:92–98CrossRefGoogle Scholar
  76. Orłowska E, Zubek S, Jurkiewicz A, Szarek-Łukaszewska G, Turnau K (2002) Influence of ­restoration on arbuscular mycorrhiza of Biscutella laevigata L. (Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calamine spoil mounds. Mycorrhiza 12:153–160CrossRefPubMedGoogle Scholar
  77. Pawlowska TE, Błaszkowski J, Rühling Å (1996) The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza 6:499–505CrossRefGoogle Scholar
  78. Pielichowska M, Wierzbicka M (2004) Uptake and localization of cadmium by Biscutella ­laevigata, a cadmium hyperaccumulator. Acta Biol Cracov Ser Bot 46:57–63Google Scholar
  79. Purin S, Rillig MC (2008) Immuno-cytolocalization of glomalin in the mycelium of the arbuscular mycorrhizal fungus Glomus intarradices. Soil Biol Biochem 40:1000–1003CrossRefGoogle Scholar
  80. Redon PO, Béguiristain T, Leyval C (2008) Influence of Glomus intraradices on Cd partitioning in a pot experiment with Medicago truncatula in four contaminated soils. Soil Biol Biochem 40:2710–2712CrossRefGoogle Scholar
  81. Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144CrossRefPubMedGoogle Scholar
  82. Richards JH, Caldwell MM (1987) Hydraulic lift: substancial nocturnal water transport between layers by Artemisia tridentata roots. Oecologia 73:486–489CrossRefGoogle Scholar
  83. Rillig MC, Caldwell BA, Wösten HAB, Sollins P (2007) Role of proteins in soil carbon and nitrogen storage: controls on persistence. Biogeochem 85:25–44CrossRefGoogle Scholar
  84. Rios-Arana JV, Gardea-Torresdey JL, Webb R, Walsh EJ (2005) Heat shock protein 60 (HSP60) response to Platiolus pattulus to combined exposures of arsenic and heavy metals. Hydrobiologia 546:577–585CrossRefGoogle Scholar
  85. Rodriguez R, Redman R (2005) Balancing the generation and elimination of reactive oxygen ­species. Proc Natl Acad Sci USA 102:3175–3176CrossRefPubMedGoogle Scholar
  86. Roth U, Von Roepenack-Lahaye E, Clemens S (2006) Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. J Exp Bot 57:4003–4013CrossRefPubMedGoogle Scholar
  87. Ryszka P, Turnau K (2007) Arbuscular mycorrhiza of introduced and native grasses colonizing zinc wastes: implications for restoration practices. Plant Soil 298:219–229CrossRefGoogle Scholar
  88. Salisbury FB, Ross CW (1992) Plant physiology. Wadsworth Publishing Company, BelmontGoogle Scholar
  89. Sarret G, Schroeder WH, Marcus MA, Geoffroy N, Manceau A (2003) Localization and ­speciation of Zn in mycorrhizal roots by µSXRF and µEXAFS. J Phys IV France 107:1193–1196CrossRefGoogle Scholar
  90. Schat H, Vooijs R (1997) Multiple tolerance and co-tolerance to heavy metals in Silene vulgaris: a co-segregation analysis. New Phytol 36:489–496CrossRefGoogle Scholar
  91. Smith MR, Charvat I, Jacobson RL (1998) Arbuscular mycorrhizae promote establishment of prairie species in a tallgrass prairie restoration. Can J Bot 76:1947–1954Google Scholar
  92. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, San Diego, CAGoogle Scholar
  93. Stommel M, Mann P, Franken P (2001) EST-library construction using spore RNA of the ­arbuscular mycorrhizal fungus Gigaspora rosea. Mycorrhiza 10:281–285CrossRefGoogle Scholar
  94. Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration series, vol 19. Kluwer, RotterdamGoogle Scholar
  95. Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1997) Clonal growth traits of two Prunella species are determined by co-occurring arbuscular mycorrhizal fungi from a calcareous ­grassland. J Ecol 85:181–191CrossRefGoogle Scholar
  96. Strzyszcz Z (1983) Lysimetric investigations of mining spoils from the aspect of their biological recultivation. In: Szegi J (ed) Recultivation of technogenous areas. Materaalja Coal Mining Group, Gyöngös, HungaryGoogle Scholar
  97. Strzyszcz Z (2003) Some problems of the reclamation of waste heaps of zinc and lead ore ­exploitation in southern Poland. Z Geol Wiss 31:167–173Google Scholar
  98. Sudova R, Doubkova P, Vosatka M (2008) Mycorrhizal association of Agrostis capillaris and Glomus intraradices under heavy metal stress: combination of plant clones and fungal isolates from contaminated and uncontaminated substrates. Appl Soil Ecol 40:19–29CrossRefGoogle Scholar
  99. Szafer W (1959) The vegetation in Poland. Państwowe Wydawnictwo Naukowe, Warszawa (in Polish)Google Scholar
  100. Szuwarzyński M (2000) Zakłady Górnicze “Trzebionka” S.A. 1950–2000. Przedsiębiorstwo Doradztwa Technicznego “Kadra”, Kraków (in Polish)Google Scholar
  101. Tibbett M (2000) Roots, foraging and the exploitation of soil nutrient patches: the role of ­mycorrhizal symbiosis. Funct Ecol 14:397–399CrossRefGoogle Scholar
  102. Tobin JM, Cooper DG, Neufeld RJ (1984) Uptake of metal ions by Rhizopus arrhizus. Environ Microbiol 47:821–824Google Scholar
  103. Trafas M (1996) Changes in the properties of post-flotation wastes due to vegetation introduced during process of reclamation. Appl Geochem 11:181–185CrossRefGoogle Scholar
  104. Tsimilli-Michael M, Eggenberg P, Biro B, Köves-Pechy K, Vörös I, Strasser RJ (2000) Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the chlorophyll a polyphasic fluorescence transient O-J-I-P. Appl Soil Ecol 15:169–182CrossRefGoogle Scholar
  105. Tsimilli-Michael M, Strasser RJ (2008) In vivo assessment of plants’ vitality: applications in detecting and evaluating the impact of mycorrhization on host plants. In: Varma A (ed) Mycorrhiza, 3rd edn. Springer, BerlinGoogle Scholar
  106. Turnau K (1998) Heavy metal uptake and arbuscular mycorrhiza development of Euphorbia ­cyparissias on zinc wastes in South Poland. Acta Soc Bot Pol 67:105–113CrossRefGoogle Scholar
  107. Turnau K, Anielska T, Ryszka P, Gawroński S, Ostachowicz B, Jurkiewicz A (2008) Establishment of arbuscular mycorrhizal plants originating from xerothermic grasslands on heavy metal rich industrial wastes – new solution for waste revegetation. Plant Soil 305:267–280CrossRefGoogle Scholar
  108. Turnau K, Haselwandter K (2002) Arbuscular mycorrhizal fungi, an essential component of soil microflora in ecosystem restoration. In: Gianinazzi S, Schűepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. From genes to mycorrhiza application. Birkhäuser Verlag, BaselGoogle Scholar
  109. Turnau K, Kottke I (2005) Fungal activity as determined by microscale methods with special emphasis on interactions with heavy metals. In: Dighton J, White JF, Oudemans P (eds) The fungal community. Its organization and role in the Ecosystem. Taylor & Francis/CRC Press, Boca Raton, FLGoogle Scholar
  110. Turnau K, Kottke I, Oberwinkler F (1993) Element localization in mycorrhizal roots of Pteridium aquilinum (L.) Kuhn collected from experimental plots treated with cadmium dust. New Phytol 123:313–324CrossRefGoogle Scholar
  111. Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190CrossRefPubMedGoogle Scholar
  112. Turnau K, Ryszka P, Gianinazzi-Pearson V, van Tuinen D (2001) Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in Southern Poland. Mycorrhiza 10:169–174CrossRefGoogle Scholar
  113. Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  114. Van Keulen H, Cutright T, Wei R (2008) Arsenate-induced expression of a class III chitinase in the dwarf sunflower Helianthus annuus. Environ Exp Bot 63:281–288CrossRefGoogle Scholar
  115. Verbruggen N, Hermans Ch, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776CrossRefPubMedGoogle Scholar
  116. Vodnik D, Grčman H, Maček I, van Elteren JT, Kovačevič M (2008) The contribution of ­glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ 392:130–136CrossRefPubMedGoogle Scholar
  117. Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Progr 11:235–250CrossRefGoogle Scholar
  118. Walker C, Vestberg M (1994) A simple and inexpensive method for producing and maintaining closed pot cultures of arbuscular mycorrhizal fungi. Agri Sc Finland 3:233–240Google Scholar
  119. Wierzbicka M, Panufnik D (1998) The adaptation of Silene vulgaris to growth on a calamine waste heap (S. Poland). Environ Pollut 101:415–426CrossRefGoogle Scholar
  120. Wierzbicka M, Potocka A (2002) Lead tolerance in plants growing on dry and on moist soils. Acta Biol Crac Ser Botanica 44:21–28Google Scholar
  121. Wu FY, Ye ZH, Wu SC, Wong MH (2007) Metal accumulation and arbuscular mycorrhizal status in metalicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta 226:1363–1378CrossRefPubMedGoogle Scholar
  122. Wu L, Antonovics J (1976) Experimental ecological genetics in Plantago. II. Lead tolerance in Plantago lanceolata and Cynodon dactylon from roadside. Ecology 57:205–208CrossRefGoogle Scholar
  123. Yang Q, Wang Y, Zhang J, Shi W, Qian C, Peng X (2007) Identification of aluminium-responsive proteins in rice roots by a proteomic approach: cysteine synthase as a key player in Al response. Proteomics 7:737–749CrossRefPubMedGoogle Scholar
  124. Załęcka R, Wierzbicka M (2002) The adaptation of Dianthus carthusianorum L. (Caryophyllaceae) to growth on zinc-lead heap in southern Poland. Plant Soil 246:249–257CrossRefGoogle Scholar
  125. Zubek S, Turnau K, Tsimilli-Michael M, Strasser RJ (2009) Response of endangered plant species to inoculation with arbuscular mycorrhizal fungi and soil bacteria. Mycorrhiza 19:113–123CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Katarzyna Turnau
    • 1
    Email author
  • Przemysław Ryszka
    • 1
  • Grzegorz Wojtczak
    • 1
  1. 1.Institute of Environmental SciencesJagiellonian UniversityKrakówPoland

Personalised recommendations