Utilizing Soil Microbes for Biocontrol

  • Alison Stewart
  • Michael Brownbridge
  • Robert A. Hill
  • Trevor A. Jackson
Chapter

Abstract

This review focuses on the potential for microbial biological control of soil-borne pests and pathogens. The range of crops affected by key soil-borne pests and pathogens, and opportunities for biocontrol using composts, organic soil ­ame­ndments and/or augmentation with selected bioactive microbes are discussed. Selected examples of biological control successes, constraints and likely future developments are also explored.

Keywords

Biocontrol Agent Fusarium Wilt Entomopathogenic Fungus Crown Gall Disease Suppression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams PB (1990) The potential of mycoparasites for biological control of plant diseases. Annu Rev Phytopathol 28:59–72PubMedCrossRefGoogle Scholar
  2. Adams PB, Ayers WA (1982) Biological control of Sclerotinia lettuce drop in the field by Sporidesmium sclerotivorum. Phytopathology 72:485–488CrossRefGoogle Scholar
  3. Agrawal AA, Tuzan S, Bent E (1999) Induced plant defences against pathogens and herbivores; Biochemistry, ecology and agriculture. APS Press, St Paul, MNGoogle Scholar
  4. Alabouvette C, Lemanceau P, Steinberg C (1996) Biological control of fusarium wilts: ­opportunities for developing a commercial product. In: Hall R (ed) Principles and practice of managing soilborne plant pathogens. APS Press, St Paul, MN, pp 192–212Google Scholar
  5. Aldahmani JH, Abbasi PA, Sahin F, Hoitink HAJ, Miller SA (2005) Reduction of bacterial leaf spot severity on radish, lettuce, and tomato plants grown in compost-amended potting mixes. Can J Plant Pathol 27:186–193CrossRefGoogle Scholar
  6. Allan RH, Thorpe CJ, Deacon JW (1992) Differential tropism to living and dead cereal root hairs by the biocontrol fungus Idriella bolleyi. Physiol Mol Plant Pathol 41:217–226CrossRefGoogle Scholar
  7. Alm SR, Villani MG, Yeh T, Shutter R (1997) Bacillus thuringiensis serovar. japonensis strain Buibui for control of Japanese and oriental beetle larvae (Coleoptera: Scarabaeidae). Appl Entomol Zool 32:477–484Google Scholar
  8. Almeida JEM, Alves SB (1996) Mortality of Heterotermes tenuis (Hagen) attracted to traps treated with Beauveria bassiana (Bals.) Vuill. and imidacloprid. An Soc Entomol Bras 25:507–512Google Scholar
  9. Almeida JEM, Alves SB, Pereira RM (1997) Selection of Beauveria spp. isolates for control of the termite Heterotermes tenuis (Hagen, 1858). J Appl Entomol 121:539–543CrossRefGoogle Scholar
  10. Aluko MO, Hering TF (1970) The mechanisms associated with the antagonistic relationship between Corticium solani and Gliocladium virens. T Brit Mycol Soc 55:173–179CrossRefGoogle Scholar
  11. Alves SB, Pereria RM (1998) Produção de fungos entomopatogênicos. In: Alves SB (ed) Controle microbiano de insetos, 2nd edn. FEALQ, Piracicaba, Brazil, pp 845–869Google Scholar
  12. Alves SB, Almeida JEM, Moino Junior A, Stimac JL, Pereira RM (1995) Use of Metarhizium anisopliae and Beauveria bassiana for control of Cornitermes cumulans (Kollar, 1832) in pastures. Ecossistema 20:50–57Google Scholar
  13. Amir H, Alabouvette C (1993) Involvement of soil abiotic factors in the mechanisms of soil ­suppressiveness to Fusarium wilts. Soil Biol Biochem 25:157–164CrossRefGoogle Scholar
  14. Anderson JD, Bailey BA, Taylor R, Sharon A, Avni A, Mattoo AK, Fuchs Y (1993) Fungal ­xylanase elicits ethylene biosynthesis and other defense responses in tobacco. In: Pech JC, Latche A, Balague C (eds) Cellular and molecular aspects of the plant hormone ethylene. Kluwer, Dordrecht, The Netherlands, pp 197–204Google Scholar
  15. Ansari MA, Shah FA, Whittaker M, Prasad M, Butt TM (2007) Control of western flower thrips (Frankliniella occidentalis) pupae with Metarhizium anisopliae in peat and peat alternative growing media. Biol Control 40:293–297CrossRefGoogle Scholar
  16. Ansari MA, Brownbridge M, Shah FA, Butt TM (2008) Efficacy of entomopathogenic fungi against soil-dwelling life stages of western flower thrips, Frankliniella occidentalis, in ­plant-growing media. Entomol Exp Appl 127:80–87CrossRefGoogle Scholar
  17. Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085PubMedGoogle Scholar
  18. Asher MJC, Shipton PJ (1981) Biology and control of take-all. Academic, London, p 538Google Scholar
  19. Badilla F, Alves SB (1991) Control del picudo de la caña de azúcar Sphenophorus levis Vaurie (Col.: Curculionidae) con Beauveria bassiana y Beauveria brongniartii en condiciones de laboratorio y campo 20–21: 34–38Google Scholar
  20. Bae YS, Knudsen GR (2005) Soil microbial biomass influence on growth and biocontrol efficacy of Trichoderma harzianum. Biol Control 32:236–242CrossRefGoogle Scholar
  21. Barak R, Elad Y, Chet I (1986) The properties of L-fructose-binding agglutinin associated with the cell wall of Rhizoctonia solani. Arch Microbiol 144:346–349CrossRefGoogle Scholar
  22. Bedford GΟ (1981) Control of the rhinoceros beetle by baculovirus. In: Burges HD (ed) Microbial control of pests and plant diseases. Academic, London, pp 418–426Google Scholar
  23. Blanchinsky D, Antonov J, Bercovitz A, Elad B, Feldman K, Husid A, Lazore M, Marcov N, Shamai I, Keren-Zur M (2007) Bionem WP: a unique tool for nematode control. Biological control of fungi and bacterial plant pathogens. IOBC/wprs Bull 30:23–26Google Scholar
  24. Boland GJ (1992) Hypovirulence and double-stranded RNA in Sclerotinia sclerotiorum. Can J Plant Pathol 14:10–17CrossRefGoogle Scholar
  25. Bolwerk A, Lagopodi AL, Lugtenberg BJJ, Bloemberg GV (2005) Visualization of interactions between a pathogenic and a beneficial Fusarium strain during biocontrol of tomato foot and root rot. Mol Plant Microbe Interact 18:710–721PubMedCrossRefGoogle Scholar
  26. Boulter JI, Boland GJ, Trevors JT (2002) Assessment of compost for suppression of Fusarium Patch (Microdochium nivale) and Typhula Blight (Typhula ishikariensis) snow molds of ­turfgrass. Biol Control 25:162–172CrossRefGoogle Scholar
  27. Brannen PM, Kenney DS (1998) KodiakReg.-a successful biological-control product for ­suppression of soil-borne plant pathogens of cotton. J Ind Microbiol Biotechnol 19: 169–171CrossRefGoogle Scholar
  28. Brian PW, McGowan JC (1945) Viridin: a highly fungistatic substance produced by Trichoderma viride. Nature 156:144CrossRefGoogle Scholar
  29. Brian PW, Curtis PJ, Hemming HG, McGowan JC (1946) The production of viridin by ­pigment-forming strains of Trichoderma viride. Ann Appl Biol 33:190–200PubMedCrossRefGoogle Scholar
  30. Brownbridge M (2006) Entomopathogenic fungi: status and considerations for their development and use in integrated pest management. Recent Res Dev Entomol 5:27–58Google Scholar
  31. Brownbridge M, Glare T (2007) Impact of entomopathogenic fungi on soil-dwelling invertebrates. In: Ekesi S, Maniania NK (eds) Use of entomopathogenic fungi in biological pest ­management. Research Signpost, Trivandrum, India, pp 295–312Google Scholar
  32. Brownbridge M, Nelson TL, Hackell DL, Eden TM, Wilson DJ, Willoughby BE, Glare TR (2006) Field application of biopolymer-coated Beauveria bassiana F418 for clover root weevil (Sitona lepidus) control in Waikato and Manawatu. NZ Plant Protection 59:304–311Google Scholar
  33. Bruck DJ (2005) Ecology of Metarhizium anisopliae in soilless potting media and the ­rhizosphere: implications for pest management. Biol Control 32:155–163CrossRefGoogle Scholar
  34. Bruck DJ (2006) Effect of potting media components on the infectivity of Metarhizium anisopliae against black vine weevil (Coleoptera: Curculionidae). J Environ Hortic 24:91–94Google Scholar
  35. Brust GE (1994) Natural enemies in straw-mulch reduce Colorado beetle populations and damage in potato. Biol Control 4:163–169CrossRefGoogle Scholar
  36. Bush LP, Fannin FF, Siegel MR, Dahlman DL, Burton HR (1993) Chemistry, occurrence and biological effects of saturated pyrrolizidine alkaloids associated with endophyte-grass ­interactions. Agric Ecosyst Environ 44:81–102CrossRefGoogle Scholar
  37. Butt TM, Brownbridge M (1997) Fungal pathogens of thrips. In: Lewis T (ed) Thrips as crop pests. CAB International, Wallingford, UK, pp 399–434Google Scholar
  38. Buysens S, Heungens K, Poppe J, Hofte M (1996) Involvement of Pyochelin and Pyoverdin in Suppression of Pythium-Induced Damping-Off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871PubMedGoogle Scholar
  39. Campbell LG, Eide JD, Smith LJ, Smith GA (2000) Control of sugarbeet root maggot with the fungus Metarhizium anisopliae. J Sugar Beet Res 37:57–69CrossRefGoogle Scholar
  40. Campbell LG, Boetel MA, Jonason NB, Jaronski ST, Smith LJ (2006) Grower-adoptable ­formulations of the entomopathogenic fungus Metarhizium anisopliae (Ascomycota: Hypocreales) for sugarbeet root maggot (Diptera: Ulidiidae) management. Environ Entomol 35:986–991CrossRefGoogle Scholar
  41. Cardinale F, Ferraris L, Valentino D, Tamietti G (2006) Induction of systemic resistance by a hypovirulent Rhizoctonia solani isolate in tomato. Physiol Mol Plant Pathol 69:160–171CrossRefGoogle Scholar
  42. Cardoza RE, Hermosa MR, Vizcaino JA, Sanz L, Monte E, Gutierrez S (2005) Secondary ­metabolites produced by Trichoderma and their importance in the biocontrol process. In: Ekesi S, Maniania NK (eds) Microorganisms for industrial enzymes and biocontrol. Research Signpost, Trivandrum, India, pp 207–228Google Scholar
  43. Cartwright DK, Benson MD (February 1994) Pseudomonas cepacia strain 5.5B and method of controlling Rhizoctonia solani therewith. US patent 5,288,633Google Scholar
  44. Chandler D, Davidson G (2005) Evaluation of the entomopathogenic fungus Metarhizium anisopliae against soil-dwelling stages of cabbage maggot (Diptera: Anthomyiidae) in glasshouse and field experiments and effect of fungicides on fungal activity. J Econ Entomol 98:1856–1862PubMedCrossRefGoogle Scholar
  45. Chandler D, Davidson G, Grant WP, Greaves J, Tatchell GM (2008) Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Trends Food Sci Tech 19:275–283CrossRefGoogle Scholar
  46. Charnley AK (2003) Fungal pathogens of insects: cuticle degrading enzymes and toxins. Adv Bot Res 40:241–321CrossRefGoogle Scholar
  47. Charnley AK, Collins SA (2007) Entomopathogenic fungi and their role in pest control. In: Kubicek CP, Druzhinina IS (eds) Environmental and microbial relationships, 2nd edn, The Mycota IV. Springer, Berlin, Germany, pp 159–187Google Scholar
  48. Chen SY, Liu X (2005) Control of the soybean cyst nematode by the fungi Hirsutella rhossiliensis and Hirsutella minnesotensis in greenhouse studies. Biol Control 32:208–219CrossRefGoogle Scholar
  49. Chen S, Liu S (2007) Effects of tillage and crop sequence on parasitism of Heterodera glycines juveniles by Hirsutella spp. and on juvenile population density. Nematropica 37:93–106Google Scholar
  50. Chen C, Belanger RR, Benhamou N, Paulitz TC (1999) Role of salicylic acid in systemic ­resistance induced by Pseudomonas spp. against Pythium aphanidermatum in cucumber roots. Eur J Plant Pathol 105:477–486CrossRefGoogle Scholar
  51. Chernin L, Chet I (2002) Microbial enzymes in the biocontrol of plant pathogens and pests. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology and applications. Marcel Dekker, New York, pp 171–226Google Scholar
  52. Chet I (1990) Mycoparasitism - Recognition, physiology and ecology. In: Barker RR, Dunn PE (eds) New directions in biological control: alternatives for suppressing, agricultural pests and diseases. Alan Liss, New York, pp 725–733Google Scholar
  53. Chng SF (2009) Microbial factors associated with the natural suppression of take-all in wheat in New Zealand. PhD. Thesis, Lincoln University, Lincoln, New ZealandGoogle Scholar
  54. Clarkson JP, Mead A, Payne T, Whipps JM (2004) Effect of environmental factors and Sclerotium cepivorum isolate on sclerotial degradation and biological control of white rot by Trichoderma. Plant Pathol 53:353–362CrossRefGoogle Scholar
  55. Claydon N, Allan M, Hanson JR, Avent AG (1987) Antifungal alkyl pyrones of Trichoderma harzianum. T Brit Mycol Soc 88:503–513CrossRefGoogle Scholar
  56. Clement SL, Elberson LR, Bosque-Perez NA, Schotzko DJ (2005) Detrimental and neutral effects of wild barley-Neotyphodium fungal endophyte associations on insect survival. Entomol Exp Appl 114:119–125CrossRefGoogle Scholar
  57. Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210–216PubMedCrossRefGoogle Scholar
  58. Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31:53–80PubMedCrossRefGoogle Scholar
  59. Cook RJ (2003) Take-all of wheat. Physiol Mol Plant Pathol 62:73–86CrossRefGoogle Scholar
  60. Cook RJ (2007) Management of resident plant growth-promoting rhizobacteria with the cropping system: a review of experience in the US Pacific Northwest. Eur J Plant Pathol 119:255–264CrossRefGoogle Scholar
  61. Cook RJ, Baker KF (1983) Introduction of antagonists for biological control. In: Cook RJ, Baker KF (eds) The nature and practice of biological control of plant pathogens. APS Press, St Paul, MN, pp 281–311Google Scholar
  62. Coombs JT, Michelsen PP, Franco CMM (2004) Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol Control 29:359–366CrossRefGoogle Scholar
  63. Cortes-Pentagos C, Olmedo-Monfil V, Herrera-Estrella A (2007) The nature of fungal ­mycoparasitic biocontrol agents. In: Chincholkar SB, Mukerji KG (eds) Biological control of plant diseases. The Haworth Press, New York, pp 327–353Google Scholar
  64. Costa JLS, Menge JA, Casale WL (1996) Investigation of some of the mechanisms by which ­bioenhanced mulches can suppress Phytophthora root rot of avocados. Microbial Res 151:183–192CrossRefGoogle Scholar
  65. Cotes AM, Lepoivre P, Semal J (1996) Correlation between hydrolytic enzyme activities ­measured in bean seedlings after Trichoderma koningii treatment combined with pregermination and the protective effect against Pythium splendens. Eur J Plant Pathol 102:497–506CrossRefGoogle Scholar
  66. Couteaudier Y, Nueveglise C, Viaud M, Riba G (1996) The fungus Beauveria for microbial ­control of soil pests: molecular ecology and strain improvement. In: The 3rd international workshop on microbial control of soil dwelling pests, Lincoln, New Zealand pp 31–37Google Scholar
  67. Craft CM, Nelson EB (1996) Microbial properties of composts that suppress damping-off and root rot of creeping bentgrass caused by Pythium graminicola. Appl Environ Microbiol 62:1550–1557PubMedGoogle Scholar
  68. Crickmore N (2005) Using worms to better understand how Bacillus thuringiensis kills insects. Trends Microbiol 13:347–350PubMedCrossRefGoogle Scholar
  69. Dababat AEA, Sikora RA (2007) Induced resistance by the mutualistic endophyte, Fusarium ­oxysporum strain 162, toward Meloidogyne incognita on tomato. Biocontrol Sci Technol 17:969–975CrossRefGoogle Scholar
  70. Danielson RM, Davey C (1973) Carbon and nitrogen nutrition of Trichoderma. Soil Biol Biochem 5:505–515CrossRefGoogle Scholar
  71. Das BC, Basu MM, Chaterjee GC (1978) Studies on the mode of action of agrocin 84. J Antibiot 31:490–492PubMedCrossRefGoogle Scholar
  72. Davidson G, Chandler D (2005) Laboratory evaluation of entomopathogenic fungi against larvae and adults of onion maggot (Diptera: Anthomyiidae). J Econ Entomol 98:1848–1855PubMedCrossRefGoogle Scholar
  73. Davies KG (2005) Interactions between nematodes and microorganisms: bridging ecological and molecular approaches. Adv Appl Microbiol 57:53–78PubMedCrossRefGoogle Scholar
  74. Davies KG, Opperman CH (2006) A potential role for collagen in the attachment of Pasteuria penetrans to nematode cuticle. Bull OILB/SROP 29:11–15Google Scholar
  75. Davies KG, Fargette M, Balla G, Daudi A, Duponnois R, Gowen SR, Mateille T, Phillips MS, Sawadogo A, Trivino C, Vouyoukalou E, Trudgill DL (2001) Cuticle heterogeneity as ­exhibited by Pasteuria spore attachment is not linked to the phylogeny of parthenogenetic root-knot nematodes (Meloidogyne spp.). Parasitology 122:111–120PubMedCrossRefGoogle Scholar
  76. de Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256CrossRefGoogle Scholar
  77. de Wit PJGM, Brandwagt BF, van der Burg HA, Cai X, van der Hoorn RAL, de Jong CF, van ‘t Klooster J, de Kock MJD, Kruijt M, Lindhout WH, Luderer R, Takken FLW, Westerink N, Vervoort JJM, Joosten MHAJ (2002) The molecular basis of co-evolution between Cladosporium fulvum and tomato. Antonie Leeuwenhoek 81:409–412PubMedCrossRefGoogle Scholar
  78. Dodd SL, Hill RA, Stewart A (2004) A duplex-PCR bioassay to detect a Trichoderma virens biocontrol isolate in non-sterile soil. Soil Biol Biochem 36:1955–1965CrossRefGoogle Scholar
  79. Domenech J, Reddy MS, Kloepper JW, Ramos B, Gutierrez-Manero J (2006) Combined ­application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. Biocontrol 51:245–258CrossRefGoogle Scholar
  80. Dong LQ, Zhang KQ (2006) Microbial control of plant-parasitic nematodes: a five-party ­interaction. Plant Soil 288:31–45CrossRefGoogle Scholar
  81. Duffy BK, Ownley BH, Weller DM (1997) Soil chemical and physical properties associated with suppression of take-all of wheat by Trichoderma koningii. Phytopathology 87:1118–1124PubMedCrossRefGoogle Scholar
  82. Eastburn DM, Butler EE (1988a) Microhabitat characterization of Trichoderma harzianum in natural soil: evaluation of factors affecting population density. Soil Biol Biochem 20:541–545CrossRefGoogle Scholar
  83. Eastburn DM, Butler EE (1988b) Microhabitat characterization of Trichoderma harzianum in natural soil: evaluation of factors affecting distribution. Soil Biol Biochem 20:547–553CrossRefGoogle Scholar
  84. Ekesi S, Maniania NK, Mohamed SA, Lux SA (2005) Effect of soil application of different ­formulations of Metarhizium anisopliae on African tephritid fruit flies and their associated endoparasitoids. Biol Control 35:83–91CrossRefGoogle Scholar
  85. Ekesi S, Dimbi S, Maniania NK (2007) The role of entomopathogenic fungi in the integrated management of fruit flies (Diptera: Tephritidae) with emphasis on species occurring in Africa. In: Ekesi S, Maniania NK (eds) Use of entomopathogenic fungi in biological pest ­management. Research Signpost, Trivandrum, India, pp 239–274Google Scholar
  86. Elad Y, Barak R, Chet I (1983a) Possible role of lectins in mycoparasitism. J Bacteriol 154:1431–1435PubMedGoogle Scholar
  87. Elad Y, Chet I, Boyle P, Henis Y (1983b) Parasitism of Trichoderma spp. on Rhizoctonia solani and Sclerotium rolfsii – SEM studies and fluorescence microscopy. Phytopathology 73:85–88CrossRefGoogle Scholar
  88. Engler KM, Gold RE (2004) Effects of multiple generations of Metarhizium anisopliae on ­subterranean termites feeding and mortality. Sociobiology 44:211–240Google Scholar
  89. Enkerli J, Kolliker R, Keller S, Widmer F (2005) Isolation and characterization of microsatellite ­markers from the entomopathogenic fungus Metarhizium anisopliae. Mol Ecol Notes 5:384–386CrossRefGoogle Scholar
  90. Enkerli J, Schwarzenbach K, Widmer F (2008) Assessing potential effects of the Beauveria brongniartii biological control agent on fungal community structures in soil microcosms. In: Proceedings of the 41st annual meeting of the society for invertebrate pathology [Abstracts], Warwick University, UK, p 81Google Scholar
  91. Entz SC, Johnson DL, Kawchuk LM (2005) Development of a PCR-based diagnostic assay for the specific detection of the entomopathogenic fungus Metarhizium anisopliae var. acridum. Mycol Res 109:1302–1312PubMedCrossRefGoogle Scholar
  92. Fenton AM, Stephens PM, Crowley J, O’Callaghan M, O’Gara F (1992) Exploitation of gene(s) involved in 2, 4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Environ Microbiol 58:3873–3878Google Scholar
  93. Fernandes EKK, Rangel DEN, Moraes AML, Bittencourt VREP, Roberts DW (2008) Cold a­ctivity of Beauveria and Metarhizium, and thermotolerance of Beauveria. J Invertebr Pathol 98:69–78PubMedCrossRefGoogle Scholar
  94. Fleming WE (1968) Biological control of the Japanese beetle. USDA Technical Bulletin No 1383. United States Department of Agriculture, Washington, DC, p 78Google Scholar
  95. Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26:75–91CrossRefGoogle Scholar
  96. Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:377–359CrossRefGoogle Scholar
  97. Fravel DR, Davis JR, Sorensen LH (1986) Effect of Talaromyces flavus and metham on Verticillium wilt incidence and potato yield, 1984–1985. Biol Cult Tests 1:7Google Scholar
  98. Freitas LG, Ferraz S, Muchovej JJ (1995) Effectiveness of different isolates of Paecilomyces lilacinus and an isolate of Cylindrocarpon destructans on the control of Meloidogyne javanica. Nematropica 25:109–115Google Scholar
  99. Georgis R, Gaugler R (1991) Predictability in biological control using entomopathogenic ­nematodes. J Econ Entomol 84:713–720Google Scholar
  100. Gerard PJ (2001) Dependence of Sitona lepidus (Coleoptera: Curculionidae) larvae on abundance of white clover Rhizobium nodules. Bull Entomol Res 91:149–152PubMedGoogle Scholar
  101. Gerlagh M, Goossen-van de Geijn HM, Hoogland AE, Vereijken PFG (2003) Quantitative aspects of infection of Sclerotinia sclerotiorum sclerotia by Coniothyrium minitans – timing of ­application, concentration and quality of conidial suspension of the mycoparasite. Eur J Plant Pathol 109:489–502CrossRefGoogle Scholar
  102. Ghisalberti EL, Narbey MJ, Dewan MM, Sivasithamparam K (1990) Variability among strains of Trichoderma harzianum in their ability to reduce take-all and to produce pyrones. Plant Soil 121:287–291CrossRefGoogle Scholar
  103. Gimsing AL, Kirkegaard JA (2006) Glucosinolate and isothiocyanate concentration in soil ­following incorporation of Brassica biofumigants. Soil Biol Biochem 38:2255–2264CrossRefGoogle Scholar
  104. Glare TR, Corbett GE, Sadler TJ (1993) Association of a large plasmid with amber disease of the New Zealand grass grub, Costelytra zealandica, caused by Serratia entomophila and Serratia proteamaculans. J Invertebr Pathol 62:165–170CrossRefGoogle Scholar
  105. Glare TR, Townsend RJ, Young SD (1994) Temperature limitations on field effectiveness of Metarhizium anisopliae against Costelytra zealandica (White) (Coleoptera: Scarabidae) in Canterbury. N Z Plant Protection 47:266–270Google Scholar
  106. Green SJ, Inbar E, Michel FC, Hadar Y, Minz D (2006) Succession of bacterial communities ­during early plant development: transition from seed to root and effect of compost amendment. Appl Environ Microbiol 72:3975–3983PubMedCrossRefGoogle Scholar
  107. Hanson LE (2000) Red of Vertical wilt symptoms in cotton following seed treatment with T. virens. J Cotton Sci 4:224–231Google Scholar
  108. Harman GE (2000) Myths and dogmas of biocontrol: changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease 84:377–393CrossRefGoogle Scholar
  109. Harman GE, Bjorkman T (1998) Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium: enzymes biological control and commercial applications, vol 2. Taylor & Francis, London, pp 229–265Google Scholar
  110. Harman GE, Taylor AG (1990) Development of an effective biological seed treatment system. In: Hornby D (ed) Biological control of soil-borne plant pathogens. CABI, Wallingford, UK, pp 415–426Google Scholar
  111. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56PubMedCrossRefGoogle Scholar
  112. Harris AR (2000) Solid formulations of binucleate Rhizoctonia isolates suppress Rhizoctonia solani and Pythium ultimum in potting medium. Microbiol Res 154:333–337PubMedCrossRefGoogle Scholar
  113. Henis Y, Lewis JA, Papavizas GC (1984) Interactions between Sclerotium rolfsii and Trichoderma spp relationship between antagonism and disease control. Soil Biol Biochem 16:391–395CrossRefGoogle Scholar
  114. Herr LJ (1995) Biological control of Rhizoctonia solani by binucleate Rhizoctonia spp. and ­hypovirulent R. solani agents. Crop Prot 14:179–186CrossRefGoogle Scholar
  115. Hill DS, Stein JI, Torkewitz NR, Morse AM, Howell CR, Pachlatko JP, Becker JO, Ligon JM (1994) Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas ­fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl Environ Microbiol 60:78–85PubMedGoogle Scholar
  116. Hill RA, Eden MA, Cutler HG, Elmer PAG, Reglinski T, Parker SR (1999) Practical natural ­solutions for plant disease control. In: Biologically active natural products: agrichemicals. CRC Press, St Paul, MN, p 210Google Scholar
  117. Hiraoka H, Asaka O, Ano T, Shoda M (1992) Characterization of Bacillus subtilis RB14, ­coproducer of peptide antibiotics iturin and surfactin. J Gen Appl Microbiol 38:635–640CrossRefGoogle Scholar
  118. Hoffland E, Hakulinen J, van Pelt JA (1996) Comparison of systemic resistance induced by ­avirulent and nonpathogenic Pseudomonas species. Phytopathology 86:757–762CrossRefGoogle Scholar
  119. Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446PubMedCrossRefGoogle Scholar
  120. Hoitink HAJ, Grebus ME (1994) Status of biological control of plant diseases with composts. Compost Sci Util 2:6–12Google Scholar
  121. Hoitink HAJ, Madden LV, Boehm MJ (1996a) Relationships among organic matter decomposition level, microbial species diversity, and soilborne disease severity. In: Society TAP (ed) Principles and practises of managing soilborne plant pathogens. R. Hall, St. Paul, MNGoogle Scholar
  122. Hoitink HAJ, Stone AG, Grebus ME (1996b) Suppression of plant diseases by composts. In: The science of composting: part 1. Blackie Academic & Professional, Glasgow, UK, pp 373–381Google Scholar
  123. Hoper H, Steinberg C, Alabouvette C (1995) Involvement of clay type and pH in the mechanisms of soil suppressiveness to Fusarium wilt of flax. Soil Biol Biochem 27:955–967CrossRefGoogle Scholar
  124. Hornby D, Bateman GL, Gutteridge RJ, Ward E, Yarham DJ (1998) Take-all disease of cereals: a regional perspective. CAB International, Wallingford, UK, p 384Google Scholar
  125. Howell CR (2007) Effect of seed quality and combination fungicide-Trichoderma spp. seed ­treatments on pre- and postemergence damping-off in cotton. Phytopathology 97:66–71PubMedCrossRefGoogle Scholar
  126. Howell CR, Stipanovic RD (1983) Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum. Can J Microbiol 29:321–324CrossRefGoogle Scholar
  127. Howell CR, Stipanovic RD (1984) Phytotoxicity to crop plants and herbicidal effects on weeds of viridiol produced by Gliocladium virens. Phytopathology 74:1346–1349CrossRefGoogle Scholar
  128. Howell CR, DeVay JE, Garber RH, Batson WE (1997) Field control of cotton seedling diseases with Trichoderma virens in combination with fungicide seed treatments. J Cotton Sci 1:15–20Google Scholar
  129. Howell CR, Hanson LE, Stipanovic RD, Puckhaber LS (2000) Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248–252PubMedCrossRefGoogle Scholar
  130. Howie WJ, Suslow T (1991) Role of antibiotic synthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens. Mol Plant Microbe Interact 4:393–399CrossRefGoogle Scholar
  131. Hoynes CD, Lewis JA, Lumsden RD, Bean GA (1999) Biological control agents in combination with fertilization or fumigation to reduce sclerotial viability of Sclerotium rolfsii and disease of snap beans in the greenhouse. J Phytopathol 147:175–182Google Scholar
  132. Hubbard JP, Harman GE, Hadar Y (1983) Effect of soilborne Pseudomonas species on the ­biocontrol agent Trichoderma harzianum on pea seeds. Phytopathology 73:655–659CrossRefGoogle Scholar
  133. Hurst MRH, Glare TR, Jackson TA, Ronson CW (2000) Plasmid-located pathogenicity ­determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. J Bacteriol 182:5127–5138PubMedCrossRefGoogle Scholar
  134. Hurst MRH, Young SD, Nelson TL, Jackson TA, Becher A, Glare TR (2007) Species ­identification and host range testing of a new entomopathogenic member of the Enterobacteriaceae. In: Proceedings of the 40th annual meeting of SIP, Quebec City, CanadaGoogle Scholar
  135. Inbar I, Chet I (1992) Biomics of fungal-cell recognition by the use of lectin-coated nylon fibres. J Bacteriol 174:1055–1059PubMedGoogle Scholar
  136. Inglis GD, Duke GM, Goettel MS, Kabaluk JT (2008) Genetic diversity of Metarhizium anisopliae var. anisopliae in southwestern British Columbia. J Invertebr Pathol 98:101–113PubMedCrossRefGoogle Scholar
  137. Jackson TA (2003) Environmental safety of inundative application of a naturally occurring ­biocontrol agent, Serratia entomophila. In: Hokkanken HMT, Hajek AE (eds) Environmental impacts of microbial insecticides: need and methods for risk assessment. Kluwer, Dordrecht, The Netherlands, pp 169–176Google Scholar
  138. Jackson TA (2007) A novel bacterium for control of grass grub. In: Vincent C, Goettel MS, Lazarovits G (eds) Biological control: a global perspective. CABI Publishing, Wallingford, UK, pp 160–168CrossRefGoogle Scholar
  139. Jackson TA, Chinn WG (1993) The effect of Metarhizium anisopliae formulations, and their combination with Serratia entomophila, on grass grub larvae. N Z Plant Protection 46:206–209Google Scholar
  140. Jackson TA, Glare T (eds) (1992) Use of pathogens in scarab pest management. Intercept, Andover, UK, p 298Google Scholar
  141. Jackson TA, Klein MG (2006) Scarabs as pests: a continuing problem. Coleopt Bull 60:102–119CrossRefGoogle Scholar
  142. Jackson TA, O’Callaghan M (1997) Environmental competence – an essential characteristic of successful microbial control agents for soil-dwelling pests. In: Proceedings of the 3rd Brisbane workshop on soil invertebrates. Bureau of sugar experimental stations, Brisbane, Australia, pp 74–77Google Scholar
  143. Jackson TA, Pearson JF, O’Callaghan M, Mahanty HK, Willocks M (1992) Pathogen to product – development of Serratia entomophila (Enterobacteriaceae) as a commercial biological ­control agent for the New Zealand grass grub (Costelytra zealandica). In: Jackson TA, Glare TR (eds) Use of pathogens in scarab pest management. Intercept, Andover, UK, pp 191–198Google Scholar
  144. Jackson TA, Boucias DG, Thaler JO (2001) Pathobiology of amber disease, caused by Serratia spp., in the New Zealand grass grub, Costelytra zealandica. J Invertebr Pathol 78:232–243PubMedCrossRefGoogle Scholar
  145. Jaffee BA (2000) Augmentation of soil with the nematophagous fungi Hirsutella rhossiliensis and Arthrobotrys haptotyla. Phytopathology 90:498–504PubMedCrossRefGoogle Scholar
  146. Jaffee BA, Ferris H, Stapleton JJ, Norton MVK, Muldoon AE (1994) Parasitism of nematodes by the fungus Hirsutella rhossiliensis as affected by certain organic amendments. J Nematol 26:152–161PubMedGoogle Scholar
  147. Jaffee BA, Muldoon AE, Westerdahl BB (1996) Failure of a mycelial formulation of the ­nematophagous fungus Hirsutella rhossiliensis to suppress the nematode Heterodera schachtii. Biol Control 6:340–346CrossRefGoogle Scholar
  148. Jaronski ST (2007) Soil ecology of the entomopathogenic Ascomycetes: a critical examination of what we (think) we know. In: Ekesi S, Maniania NK (eds) Use of entomopathogenic fungi in biological pest management. Research Signpost, Trivandrum, India, pp 91–143Google Scholar
  149. Jaronski ST, Jackson MA (2008) Efficacy of Metarhizium anisopliae microsclerotial granules. Biocontrol Sci Technol 18:849–863CrossRefGoogle Scholar
  150. Jeffries P, Young TWK (1994) Interfungal parasitic relationships. CAB International, Wallingford, UKGoogle Scholar
  151. Jiang Z-Q, Guo Y-H, Li S-M, Qi H-Y, Guo J-H (2006) Evaluation of biocontrol efficiency of ­different Bacillus preparations and field application methods against Phytophthora blight of bell pepper. Biol Control 36:216–223CrossRefGoogle Scholar
  152. Jin X, Harman GA, Taylor AG (1991) Conidial biomass and desiccation tolerance of Trichoderma harzarium produced at different water potentials. Biol Control 1:237–243CrossRefGoogle Scholar
  153. Johnson VW, Pearson JF, Jackson TA (2001) Formulation of Serratia entomophila for biological control of grass grub. N Z Plant Protection 54:125–127Google Scholar
  154. Jones RW, Hancock JG (1987) Conversion of viridin to viridiol by viridin-producing fungi. Can J Microbiol 33:963–966PubMedCrossRefGoogle Scholar
  155. Kannangara T, Utkhede RS, Bactawar B (2004) Compost effect on greenhouse cucumbers and suppression of Fusarium oxysporum. Compost Sci Util 12:308–313Google Scholar
  156. Keller S (1992) The Beauveria-Melolontha project: experiences with regard to locust and ­grasshopper control. In: Lomer CJ, Prior C (eds) Biological control of locusts and ­grasshoppers. CAB International, Wallingford, UK, pp 279–286Google Scholar
  157. Keller S (2000) Use of Beauveria brongniartii in Switzerland and its acceptance by farmers. Bull OILB/SROP 23:67–71Google Scholar
  158. Keller S, Kessler P, Schweizer C (2003) Distribution of insect pathogenic soil fungi in Switzerland with special reference to Beauveria brongniartii and Metharhizium anisopliae. Biocontrol 48:307–319CrossRefGoogle Scholar
  159. Kepler RM, Bruck DJ (2006) Examination of the interaction between the black vine weevil (Coleoptera: Curculionidae) and an entomopathogenic fungus reveals a new tritrophic ­interaction. Environ Entomol 35:1021–1029CrossRefGoogle Scholar
  160. Kerr A (1980) Biological control of crown gall through production of agrocin 84. Plant Dis 64:25–30Google Scholar
  161. Kerry B, Hidalgo-Diaz L (2004) Application of Pochonia chlamydosporia in the integrated ­control of root-knot nematodes on organically grown vegetable crops in Cuba. Bull OILB/SROP 27:123–126Google Scholar
  162. Kessler P, Enkerli J, Schweizer C, Keller S (2004) Survival of Beauveria brongniartii in the soil after application as a biocontrol agent against the European cockchafer Melolontha ­melolontha. Biocontrol 49:563–581CrossRefGoogle Scholar
  163. Kiewnick S (2004) Biological control of plant parasitic nematodes with Paecilomyces lilacinus, strain 251. Bull OILB/SROP 27:133–136Google Scholar
  164. Kiewnick S, Sikora RA (2006) Biological control of the root-knot nematode Meloidogyne ­incognita by Paecilomyces lilacinus strain 251. Biol Control 38:179–187CrossRefGoogle Scholar
  165. King EB, Parke JL (1993) Biocontrol of Aphanomyces root rot and Pythium damping-off by Pseudomonas cepacia AMMD on four pea cultivars. Plant Dis 77:1185–1188CrossRefGoogle Scholar
  166. Kirk JJ, Deacon JW (1987) Control of the take-all fungus by Microdochium bolleyi, and ­interactions involving M. bolleyi, Phialophora graminicola and Periconia macrospinosa on cereal roots. Plant Soil 98:231–237CrossRefGoogle Scholar
  167. Kirkland BH, Eisa A, Keyhani NO (2005) Oxalic acid as a fungal acaricidal virulence factor. J Med Entomol 42:346–351PubMedCrossRefGoogle Scholar
  168. Klein MG (1992) Use of Bacillus popilliae in scarab control. In: Jackson TA, Glare TR (eds) Use of pathogens in scarab pest management. Intercept, Andover, UK, pp 179–189Google Scholar
  169. Klein MG, Jackson TA (1992) Bacterial diseases of scarabs. In: Jackson TJ, Glare T (eds) Use of pathogens in scarab pest management. Intercept, Andover, UK, pp 43–61Google Scholar
  170. Knudsen GR, Eschen DJ, Dandurand LM, Bin L (1991) Potential for control of Sclerotinia ­sclerotiorum through colonization of sclerotia by Trichoderma harzianum. Plant Dis 75:466–470CrossRefGoogle Scholar
  171. Kraus J, Loper JE (1995) Characterization of a genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 61:849–854PubMedGoogle Scholar
  172. Kredics L, Antal Z, Manczinger L, Szekeres A, Kevei F, Nagy E (2003) Influence of environmental parameters on Trichoderma strains with biocontrol potential. Food Technol Biotechnol 41:37–42Google Scholar
  173. Kredics L, Manczinger L, Antal Z, Pénzes Z, Szekeres A, Kevei F, Nagy E (2004) In vitro water activity and pH dependence of mycelial growth and extracellular enzyme activities of Trichoderma strains with biocontrol potential. J Appl Microbiol 96:491–498PubMedCrossRefGoogle Scholar
  174. Kubicek CP, Mach RL, Peterbauer CK, Lorito M (2001) Trichoderma: from genes to biocontrol. J Plant Pathol 83:11–23Google Scholar
  175. Laing SAK, Deacon JW (1991) Video microscopical comparison of mycoparasitism by Pythium oligandrum, P. nunn and an unnamed Pythium species. Mycol Res 95:469–479CrossRefGoogle Scholar
  176. Larkin RP, Fravel DR (2002) Effects of varying environmental conditions on biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp. Phytopathology 92:1160–1166PubMedCrossRefGoogle Scholar
  177. Larkin RP, Hopkins DL, Martin FN (1996) Suppression of Fusarium wilt of watermelon by ­nonpathogenic Fusarium oxysporum and other microorganisms recovered from a disease-suppressive soil. Phytopathology 86:812–819CrossRefGoogle Scholar
  178. Lartey RT, Conway KE (2004) Novel considerations in biological control of plant pathogens: microbial interactions. In: Lartey RT, Caesar AJ (eds) Emerging concepts in plant health ­management. Research Signpost, Trivandrum, India, pp 141–157Google Scholar
  179. Lascaris D, Deacon JW (1991) Colonization of wheat roots from seed-applied spores of Idriella (Microdochium) bolleyi: a biocontrol agent of take-all. Biocontrol Sci Technol 1:229–240CrossRefGoogle Scholar
  180. Lazarovits G (2001) Management of soil-borne plant pathogens with organic soil amendments: a disease control strategy salvaged from the past. Can J Plant Pathol 23:1–7CrossRefGoogle Scholar
  181. Lehr NA, Schrey SD, Hampp R, Tarkka MT (2008) Root inoculation with a forest soil ­streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce. New Phytol 177:965–976PubMedCrossRefGoogle Scholar
  182. Lemenceau P, Bakker PAHM, De Kogel WJ, Alabouvette C, Schippers B (1993) Antagonistic effect of nonpathogenic Fusarium oxysporum strain Fo47 and pseudobactin 358 upon ­pathogenic Fusarium oxysporum f. sp. dianthi. Appl Environ Microbiol 59:74–82Google Scholar
  183. Li DP, Holdom DG (1995) Effects of nutrients on colony formation, growth, and sporulation of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes). J Invertebr Pathol 65:253–260CrossRefGoogle Scholar
  184. Ligon JM, Hill DS, Hammer PE, Torkewitz NR, Hofmann D, Kempf HJ, van Pee, KH (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manage Sci 56:688–695CrossRefGoogle Scholar
  185. Litterick AM, Harrier LA, Wallace P, Watson CA, Wood M (2004) The role of uncomposted materials, composts, manures and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production – A review. Crit Rev Plant Sci 23:453–479CrossRefGoogle Scholar
  186. Lodha S (1995) Soil solarization, summer irrigation and amendments for the control of Fusarium oxysporum f.sp. cumini and Macrophomina phaseolina in arid soils. Crop Prot 14:215–219CrossRefGoogle Scholar
  187. Loper JE (1988) Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology 78:166–172CrossRefGoogle Scholar
  188. Lorang JM, Tuori RP, Martinez JP, Sawyer TL, Redman RS, Rollins JA, Wolpert TJ, Johnson KB, Rodriguez RJ, Dickman MB, Ciuffetti LM (2001) Green fluorescent protein is lighting up fungal biology. Appl Environ Microbiol 67:1987–1994PubMedCrossRefGoogle Scholar
  189. Lorito M (1998) Chitnolytic enzymes and their genes. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium. Taylor & Francis, London, pp 73–99Google Scholar
  190. Lumsden RD, Knauss JF (2007) Commercial development of Gliocladium virens for damping-off disease. In: Vincent C, Goettel MS, Lazarovits G (eds) Biological control: a global perspective. CAB International, Kew, UK, pp 203–210CrossRefGoogle Scholar
  191. Lumsden RD, Locke JC, Adkins ST, Walter JF, Ridout CJ (1992) Isolation and localisation of the antibiotic gliotoxin produced by Gliocladium virens from alginate prill in soil and soilless media. Phytopathology 82:230–235CrossRefGoogle Scholar
  192. Lumsden RD, Lewis JA, Fravel D (1995) Formulation and delivery of biocontrol agents for use against soilborne plant pathogens. In: Hall FR, Barry JW (eds) Biorational pest control agents: formulation and delivery. American Chemical Society, Washington, DC, pp 166–182CrossRefGoogle Scholar
  193. Lumsden RD, Walter JF, Baker CP (1996) Development of Gliocladium virens for damping-off control. Can J Plant Pathol 18:463–468CrossRefGoogle Scholar
  194. Luth P (2001) The control of Sclerotinia spp. and Sclerotium cepivorum with the biological ­fungicide Contrans(R)WG – experiences from field trials and commercial use. In: Proceedings of the XI international Sclerotinia workshop, Central Science Laboratory, York, England, pp 37–38Google Scholar
  195. MacSpadden Gardener BB, Weller DM (2001) Changes in populations of rhizosphere bacteria associated with Take-all disease of wheat. Appl Environ Microbiol 67:4414–4425CrossRefGoogle Scholar
  196. Maniania NK, Ekesi S, Songa JM (2002) Managing termites in maize with the entomopathogenic fungus Metarhizium anisopliae. Insect Sci Appl 22:41–46Google Scholar
  197. Manocha MS, Govindsamy V (1998) Chitinolytic enzymes of fungi and their involvement in biocontrol of plant pathogens. In: Boland GJ, Kuykendall LD (eds) Plant-microbe interactions and biological control. Marcel Dekker, New York, pp 309–327Google Scholar
  198. Marin S, Sanchis V, Ramos AJ, Vinas I, Magan N (1998) Environmental factors, in vitro ­interactions, and niche overlap between Fusarium moniliforme, F. proliferatum, and F. graminearum, Aspergillus and Penicillium species from maize grain. Mycol Res 102:831–837CrossRefGoogle Scholar
  199. Marrone PG (1994) Present and future use of Bacillus thuringiensis in integrated pest ­management systems: an industrial perspective. Biocontrol Sci Technol 4:517–526CrossRefGoogle Scholar
  200. Martin FN (2003) Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide. Annu Rev Phytopathol 41:325–350PubMedCrossRefGoogle Scholar
  201. McKellar ME, Nelson EB (2003) Compost-induced suppression of Pythium damping-off is ­mediated by fatty-acid-metabolizing seed-colonizing microbial communities. Appl Environ Microbiol 69:452–460PubMedCrossRefGoogle Scholar
  202. McLean KL, Swaminathan J, Frampton CM, Hunt JS, Ridgway HJ, Stewart A (2005) Effect of formulation on the rhizosphere competence and biocontrol ability of Trichoderma atroviride C52. Plant Pathol 54:212–218CrossRefGoogle Scholar
  203. Meera MS, Shivanna MB, Kageyama K, Hyakumachi M (1994) Plant growth promoting fungi from zoysiagrass rhizosphere as potential inducers of systemic resistance in cucumbers. Phytopathology 84:1399–1406CrossRefGoogle Scholar
  204. Melzer MS, Boland GJ (1996) Transmissible hypovirulence in Sclerotinia minor. Can J Plant Pathol 18:19–28CrossRefGoogle Scholar
  205. Mennan S, Chen SY, Melakeberhan H (2006) Suppression of Meloidogyne hapla populations by Hirsutella minnesotensis. Biocontrol Sci Technol 16:181–193CrossRefGoogle Scholar
  206. Mennan S, Chen SY, Melakeberhan H (2007) Effects of Hirsutella minnesotensis and N-Viro Soil on populations of Meloidogyne hapla. Biocontrol Sci Technol 17:233–246CrossRefGoogle Scholar
  207. Metting FB (1993) Structure and physiological ecology of soil microbial communities. In: Metting FB (ed) Soil microbial ecology. Marcel Dekker, New York, pp 3–25Google Scholar
  208. Meyer SLF, Massoud SI, Chitwood DJ, Roberts DP (2000) Evaluation of Trichoderma virens and Burkholderia cepacia for antagonistic activity against root-knot nematode, Meloidogyne incognita. Nematology 2:871–879CrossRefGoogle Scholar
  209. Meyling NV, Eilenberg J (2006) Occurrence and distribution of soil-borne entomopathogenic fungi within a single organic agroecosystem. Agric Ecosyst Environ 113:336–341CrossRefGoogle Scholar
  210. Meyling NV, Eilenberg J (2007) Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control. Biol Control 43:145–155CrossRefGoogle Scholar
  211. Meyling NV, Lübeck M, Buckley EP, Eilenberg J, Rehner SA (2009) Community composition, host range and genetic structure of the fungal entomopathogen Beauveria in adjoining ­agricultural and seminatural habitats. Mol Ecol 18:1282–1293PubMedCrossRefGoogle Scholar
  212. Mietkiewski RT, Pell JK, Clark SJ (1997) Influence of pesticide use on the natural occurrence of entomopathogenic fungi in arable soils in the UK: field and laboratory comparisons. Biocontrol Sci Technol 7:565–575CrossRefGoogle Scholar
  213. Milner RJ, Staples JA, Lutton GG (1998) The selection of an isolate of the hyphomycete fungus, Metarhizium anisopliae, for control of termites in Australia. Biol Control 11:240–247CrossRefGoogle Scholar
  214. Milner RJ, Samson P, Morton R (2003) Persistence of conidia of Metarhizium anisopliae in ­sugarcane fields: effect of isolate and formulation on persistence over 3.5 years. Biocontrol Sci Technol 13:507–516CrossRefGoogle Scholar
  215. Minuto A, Spadaro D, Garibaldi A, Gullino ML (2004) Control of soilborne pathogens of tomato using a commercial formulate of Streptomyces griseoviridis and solarization. Crop Prot 25:468–475CrossRefGoogle Scholar
  216. Moorhouse ER, Gillespie AT, Charnley AK (1992a) Effect of potting media on the control of Otiorhynchus sulcatus larvae on outdoor strawberry plants using the entomogenous fungus Metarhizium anisopliae. Biol Control 2:238–243CrossRefGoogle Scholar
  217. Moorhouse ER, Charnley AK, Gillespie AT (1992b) A review of the biology and control of the vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae). Ann Appl Biol 121:431–454CrossRefGoogle Scholar
  218. Moorhouse ER, Easterbrook MA, Gillespie AT, Charnley AK (1993a) Control of Otiorhynchus sulcatus (Fabricius) (Coleoptera: Curculionidae) larvae on a range of hardy ornamental ­nursery stock species using the entomogenous fungus Metarhizium anisopliae. Biocontrol Sci Technol 3:63–72CrossRefGoogle Scholar
  219. Moorhouse ER, Easterbrook MA, Gillespie AT, Charnley AK (1993b) The development of Otiorhynchus sulcatus (Fabricus) (Coleoptera: Curculionidae) larvae on a range of ornamental pot plant species and the potential for control using Metarhizium anisopliae. J Hortic Sci 68:627–635Google Scholar
  220. Moorhouse ER, Gillespie AT, Charnley AK (1993c) Application of Metarhizium anisopliae (Metsch.) Sor. conidia to control Otiorhynchus sulcatus (F.) (Coleoptera: Curculionidae) ­larvae on glasshouse pot plants. Ann Appl Biol 122:623–636CrossRefGoogle Scholar
  221. Murphy PJ, Roberts WP (1979) A basis for agrocin 84 sensitivity in Agrobacterium radiobacter. J Gen Microbiol 114:207–213Google Scholar
  222. Murphy JA, Sun S, Betts LL (1993) Endophyte-enhanced resistance to billbug (Coleoptera: Curculionidae), sod webworm (Lepidoptera: Pyralidae), and white grub (Coleoptera: Scarabaeidae) in tall fescue. Environ Entomol 22:699–703Google Scholar
  223. Nakasaki K, Hiraoka H, Nagata H (1998) A new operation for producing disease-suppressive compost from grass clippings. Appl Environ Microbiol 64:4015–4020PubMedGoogle Scholar
  224. Navon A (1993) Control of lepidopteran pests with Bacillus thuringiensis. In: Entwistle PF, Cory JS, Bailey MJ et al (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, New York, pp 125–146Google Scholar
  225. Nel B, Steinberg C, Labuschagne N, Viljoen A (2006) The potential of nonpathogenic Fusarium oxysporum and other biological control organisms for suppressing Fusarium wilt of banana. Plant Pathol 55:217–223CrossRefGoogle Scholar
  226. Noble R, Coventry E (2005) Suppression of soil-borne plant diseases with composts: a review. Biocontrol Sci Technol 15:3–20CrossRefGoogle Scholar
  227. Nuss DL, Koltin Y (1990) Significance of dsRNA genetic elements in plant pathogenic fungi. Annu Rev Phytopathol 28:37–58PubMedCrossRefGoogle Scholar
  228. O’Callaghan M, Brownbridge M (2009) Environmental impacts of microbial control agents used for control of invasive pests. In: Hajek AE, Glare T, O’Callaghan M (eds) Use of microbes for control and eradication of invasive arthropods. Springer Science and Business Media BV, The Netherlands, pp 305–327CrossRefGoogle Scholar
  229. O’Callaghan M, Jackson TA (1993) Isolation and enumeration of Serratia entomophila – a ­bacterial pathogen of the New Zealand grass grub, Costelytra zealandica. J Appl Bacteriol 75:307–314CrossRefGoogle Scholar
  230. Oerke EC, Dehne H-W, Schonbeck F, Weber A (eds) (1994) Crop production and crop protection: estimated losses in major food and cash crops. Elsevier, Amsterdam, The Netherlands, pp. 808Google Scholar
  231. Oi DH, Williams DF (2002) Impact of Thelohania solenopsae (Microsporidia: Thelohaniidae) on polygyne colonies of red imported fire ants (Hymenoptera: Formicidae). J Econ Entomol 95:558–562PubMedCrossRefGoogle Scholar
  232. Olivain C, Alabouvette C (1999) Process of tomato root colonization by a pathogenic strain of Fusarium oxysporum f.sp. lycopersici in comparison with a non-pathogenic strain. New Phytol 141:497–510CrossRefGoogle Scholar
  233. Ovreas L, Torsvik V (1998) Microbial diversity and community structure in two different ­agricultural soil communities. Microb Ecol 36:303–315PubMedCrossRefGoogle Scholar
  234. Ownley BH, Weller DM, Thomashow LS (1992) Influence of in situ and in vitro pH on ­suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2–79. Phytopathology 82:178–184CrossRefGoogle Scholar
  235. Ownley BH, Duffy BK, Weller DM (2003) Identification and manipulation of soil properties to improve the biological control performance of phenazine-producing Pseudomonas ­fluorescens. Appl Environ Microbiol 69:3333–3343PubMedCrossRefGoogle Scholar
  236. Ownley BH, Pereira RM, Klingeman WE, Quigley NB, Leckie BM (2004) Beauveria bassiana, a dual purpose biocontrol organism, with activity against insect pests and plant pathogens. In: Ekesi S, Maniania NK (eds) Emerging concepts in plant health management 2004. Research Signpost, Trivandrum, India, pp 255–269Google Scholar
  237. Ozbay N, Newman SE (2004) Biological control with Trichoderma spp. with emphasis on T. harzianum. Pak J Biol Sci 7:478–484CrossRefGoogle Scholar
  238. Padmavathi J, Devi KU, Rao CUM (2003) The optimum and tolerance pH range is correlated to colonial morphology in isolates of the entomopathogenic fungus Beauveria bassiana – a ­potential biopesticide. World J Microbiol Biotechnol 19:469–477CrossRefGoogle Scholar
  239. Papavizas GC (1985) Trichoderma and Gliocladium: biology, ecology and potential for ­biocontrol. Annu Rev Phytopathol 23:23–54CrossRefGoogle Scholar
  240. Parkman JP, Smart GC (1996) Entomopathogenic nematodes, a case study: introduction of Steinernema scapterisci in Florida. Biocontrol Sci Technol 6:413–419CrossRefGoogle Scholar
  241. Pérez-Rodriguez I, Doronteo-Mendoza A, Franco-Navarro F, Santiago-Santiago V, Montero-Pineda A (2007) Isolates of Pochonia chlamydoporia var. chlamydosporia from Mexico as potential biological control agents of Nacobbus aberrans. Nematropica 37:127–134Google Scholar
  242. Pharand B, Carisse O, Benhamou N (2002) Cytological aspects of compost-mediated induced resistance against Fusarium crown and root rot in tomato. Phytopathology 92:424–438PubMedCrossRefGoogle Scholar
  243. Pierson EA, Weller DM (1994) Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology 84:940–947CrossRefGoogle Scholar
  244. Preston GM (2004) Plant perceptions of plant growth-promoting Pseudomonas. Philos Trans R Soc Lond B Biol Sci 359:907–918PubMedCrossRefGoogle Scholar
  245. Quesada-Moraga E, Carrasco-Diaz JA, Santiago-Alvarez C (2006) Insecticidal and antifeedant activities of proteins secreted by entomopathogenic fungi against Spodoptera littoralis (Lep., Noctuidae). J Appl Entomol 130:442–452CrossRefGoogle Scholar
  246. Quesada-Moraga E, Navas-Cortes JA, Maranhao EAA, Ortiz-Urquiza A, Santiago-Alvarez C (2007) Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycol Res 111:947–966PubMedCrossRefGoogle Scholar
  247. Quintela ED, McCoy CW (1998) Synergistic effect of imidacloprid and two entomopathogenic fungi on the behavior and survival of larvae of Diaprepes abbreviatus (Coleoptera: Curculionidae) in soil. J Econ Entomol 91:110–122Google Scholar
  248. Ramle M, Wahid MB, Norman K, Glare TR, Jackson TA (2005) The incidence and use of Oryctes virus for control of rhinoceros beetle in oil palm plantations in Malaysia. J Invertebr Pathol 89:85–90PubMedCrossRefGoogle Scholar
  249. Rangel DEN, Alston DG, Roberts DW (2008) Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle and virulence of Metarhizium anisopliae, an entomopathogenic fungus. Mycol Res 112:1355–1361PubMedCrossRefGoogle Scholar
  250. Rath AC (2002) Ecology of entomopathogenic fungi in field soils. In: Proceedings of the meeting of the society for invertebrate pathology, Iguassu Falls, Brazil, pp 65–71Google Scholar
  251. Rath AC, Bullard GK (1997) Persistence of Metarhizium anisopliae DAT F-001 in pasture soils for 7.5 years – implications for sustainable soil-pest management. In: Allsopp PG, Rogers DJ, Robertson LN (eds) Soil invertebrates in 1997. Bureau of Sugar Experimental Stations, Brisbane, Australia, pp 78–80Google Scholar
  252. Rath AC, Koen TB, Yip HY (1992) The influence of abiotic factors on the distribution and ­abundance of Metarhizium anisopliae in Tasmanian pasture soils. Mycol Res 96:378–384CrossRefGoogle Scholar
  253. Rath AC, Worledge D, Koen TB, Rowe BA (1995) Long-term field efficacy of the entomogenous fungus Metarhizium anisopliae against the subterranean scarab, Adoryphorus couloni. Biocontrol Sci Technol 5:439–451CrossRefGoogle Scholar
  254. Raymond RN, Muller G, Matzanke F (1984) Complexation of iron by sideophores. A review of their solution and structural chemistry and biological function. Top Curr Chem 123:49–102CrossRefGoogle Scholar
  255. Redmond CT, Potter DA (1995) Lack of efficacy of in vitro and putatively in vitro- produced Bacillus popilliae against field populations of Japanese beetle (Coleoptera: Scarabaeidae) grubs in Kentucky. J Econ Entomol 88:846–854Google Scholar
  256. Reinecke P, Fokkema NJ (1981) An evaluation of methods of screening fungi from the haulm base of cereals for antagonism to Pseudocercosporella herpotrichoides in wheat. T Brit Mycol Soc 77:343–350CrossRefGoogle Scholar
  257. Ristaino JB, Perry KB, Lumsden RD (1991) Effect of solarization and Gliocladium virens on sclerotia of Sclerotium rolfsii, soil microbiota, and the incidence of southern blight of tomato. Phytopathology 81:1117–1124CrossRefGoogle Scholar
  258. Rovira AD, Ryder MH, Harris AR (1992) Biological control of root diseases with pseudomonads. In: Tjamos ES, Papavizas GC, Cook RJ (eds) Biological control of plant diseases – Progress and challenges for the future. Plenum, New York, pp 175–184Google Scholar
  259. Ryder MH, Jones DA (1990) Biological control of crown gall. In: Hornby D (ed) Biological ­ ­control of soil-borne plant pathogens. CAB International, Wallingford, UK, pp 45–63Google Scholar
  260. Schippers B, Geels FP, Hoekstra O, Lamers JG, Maenhout CAAA, Scholte K (1985) Yield ­depressions in narrow rotations caused by unknown microbial factors and their suppression by selected pseudomonads. In: Parker CA, Rovira AD, Moore KJ et al (eds) Ecology and management of soilborne plant pathogens. The American Phytopathological Society, St. Paul, MN, pp 127–130Google Scholar
  261. Schrey SD, Tarkka MT (2008) Friends and foes: streptomycetes as modulators of plant disease and symbiosis. Antonie Leeuwenhoek 94:11–19PubMedCrossRefGoogle Scholar
  262. Schwarzenbach K, Widmer F, Enkerli J (2007a) Cultivation-independent analysis of fungal ­genotypes in soil by using simple sequence repeat markers. Appl Environ Microbiol 73:6519–6525PubMedCrossRefGoogle Scholar
  263. Schwarzenbach K, Enkerli J, Widmer F (2007b) Objective criteria to assess representativity of soil fungal community profiles. J Microbiol Meth 68:358–366CrossRefGoogle Scholar
  264. Sequeira L (1962) Influence of organic amendments on survival of Fusarium oxysporum f. cubense in the soil. Phytopathology 52:976–982Google Scholar
  265. Serra-Wittling C, Houot S, Alabouvette C (1996) Increased soil suppressiveness to Fusarium wilt of flax after addition of municipal soild waste compost. Soil Biol Biochem 28:1207–1214CrossRefGoogle Scholar
  266. Shah FA, Ansari MA, Prasad M, Butt TM (2007) Evaluation of black vine weevil (Otiorhynchus sulcatus) control strategies using Metarhizium anisopliae with sublethal doses of insecticides in disparate horticultural growing media. Biol Control 40:246–252CrossRefGoogle Scholar
  267. Shah FA, Gaffney M, Ansari MA, Prasad M, Butt TM (2008) Neem seed cake enhances the ­efficacy of the insect pathogenic fungus Metarhizium anisopliae for the control of black vine weevil, Otiorhynuchs sulcatus (Coleoptera: Curculionidae). Biol Control 44:111–115CrossRefGoogle Scholar
  268. Shapiro-Ilan DI, Reilly CC, Hotchkiss MW, Wood BW (2002) The potential for enhanced ­fungicide resistance in Beauveria bassiana through strain discovery and artificial selection. J Invertebr Pathol 81:86–93PubMedCrossRefGoogle Scholar
  269. Shapiro-Ilan DI, Jackson MA, Reilly CC, Hotchkiss MW (2004) Effects of combining and ­entomopathogenic fungi or bacterium with entomopathogenic nematodes on mortality of Curculio caryae (Coleoptera: Curculionidae). Biol Control 30:119–126CrossRefGoogle Scholar
  270. Sharon E, Bar-Eyal M, Chet I, Herrera-Estrella A, Kleifeld O, Spiegel Y (2001) Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology 91:687–693PubMedCrossRefGoogle Scholar
  271. Shishido M, Miwa C, Usami T, Amemiya Y, Johnson KB (2005) Biological control efficiency of Fusarium wilt of tomato by nonpathogenic Fusarium oxysporum Fo-B2 in different ­environments. Phytopathology 95:1072–1080PubMedCrossRefGoogle Scholar
  272. Siddiqui IA, Shaukat SS (2003) Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2, 4-diacetylpholoroglucinol. Soil Biol Biochem 35:1615–1623CrossRefGoogle Scholar
  273. Siddiqui IA, Haas D, Heeb S (2005) Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl Environ Microbiol 71:5646–5649PubMedCrossRefGoogle Scholar
  274. Singh KP, Jaiswal RK, Kumar N, Kumar D (2007) Nematophagous fungi associated with root galls of rice caused by Meloidogyne graminicola and its control by Arthrobotrys dactyloides and Dactylaria brochopaga. J Phytopathol 155:193–197CrossRefGoogle Scholar
  275. Sivan A, Chet I (1989) The possible role of competition between Trichoderma harzianum and Fusarium oxysporum on rhizosphere colonization. Phytopathology 79:198–203CrossRefGoogle Scholar
  276. Sivasithamparam K, Ghisalberti EL (1998) Secondary metabolism in Trichoderma and Gliocladium. In: Kubicek CP, Harman GE, Ondik KL (eds) Trichoderma and Gliocladium: basic biololgy, taxonomy and genetics. CRC Press, Boca Raton, FL, pp 139–191Google Scholar
  277. Slininger PJ, Shea-Wilbur MA (1995) Liquid-culture pH, temperature, and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas ­fluorescens 2–79. J Appl Microbiol Biotechnol 43:194–800CrossRefGoogle Scholar
  278. Somasekhar N, Grewal PS, EABd N, Stinner BR (2002) Non-target effects of entomopathogenic nematodes on the soil nematode community. J Appl Ecol 39:735–744CrossRefGoogle Scholar
  279. Stevens C, Khan VA, Rodriguez-Kabana R, Ploper LD, Backman PA, Collins DJ, Brown JE, Wilson MA, Igwegbe ECK (2003) Integration of soil solarization with chemical, biological and cultural control for the management of soilborne diseases of vegetables. Plant Soil 253:493–506CrossRefGoogle Scholar
  280. Stewart A (2001) Commercial biocontrol- reality or fantasy. Australas Plant Pathol 30:127–131CrossRefGoogle Scholar
  281. Stewart A, McLean KL (2007) Biological control of onion white rot. In: Mukerji KG, Chincholkar SB (eds) Biological control of plant disease. The Haworth Press, New York, pp 123–149Google Scholar
  282. Steyaert JM, Ridgway HJ, Elad Y, Stewart A (2003) Genetic basis of mycoparasitism: a ­mechanism of biological control by species of Trichoderma. N Z J Crop Hortic Sci 31:281–291CrossRefGoogle Scholar
  283. Strashnow Y, Elad Y, Sivan A, Chet I (1985) Integrated control of Rhizoctonia solani by methyl bromide and Trichoderma harzianum. Plant Pathol 34:146–151CrossRefGoogle Scholar
  284. Strasser H, Vey A, Butt TM (2000) Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontrol Sci Technol 10:717–735CrossRefGoogle Scholar
  285. Sulistyanto D, Ehlers RU (1996) Efficacy of the entomopathogenic nematodes Heterorhabditis megidis and Heterorhabditis bacteriophora for the control of grubs (Phyllopertha horticola and Aphodius contaminatus) in golf course turf. Biocontrol Sci Technol 6:247–250CrossRefGoogle Scholar
  286. Sun JZ, Fuxa JR, Henderson G (2003) Effects of virulence, sporulation, and temperature on Metarhizium anisopliae and Beauveria bassiana laboratory transmission in Coptotermes ­formosanus. J Invertebr Pathol 84:38–46PubMedCrossRefGoogle Scholar
  287. Swaminathan J, Bunt CR, Jackson TA (2008) Coating technology to enhance the shelf life of probiotic bacteria on cereals. In: Proceedings of the IPA world congress, Beverley Hills Hilton, Beverley Hills, CAGoogle Scholar
  288. Szczech M, Shoda M (2006) The effect of mode of application of Bacillus subtilis RB14-C on its efficacy as a biocontrol agent against Rhizoctonia solani. J Phytopathol 154:370–377CrossRefGoogle Scholar
  289. Tesfamariam M, Kiewnick S, Sikora R (2009) Endophytic bacteria from Ethiopian coffee plants and their potential to antagonise Meloidogyne incognita. Nematology 11:117–127CrossRefGoogle Scholar
  290. Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens 2-97 in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508PubMedGoogle Scholar
  291. Thompson SR, Brandenburg RL (2005) Tunneling responses of mole crickets (Orthoptera: Gryllotalpidae) to the entomopathogenic fungus, Beauveria bassiana. Environ Entomol 34:140–147CrossRefGoogle Scholar
  292. Thompson SR, Brandenburg RL, Arends JJ (2006) Impact of moisture and UV degradation on Beauveria bassiana (Balsamo) Vuillemin conidial viability in turfgrass. Biol Control 39:401–407CrossRefGoogle Scholar
  293. Tian B, Yang J, Zhang K (2007) Bacteria used in the biological control of plant-parasitic ­nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol Ecol 61:197–213PubMedCrossRefGoogle Scholar
  294. Timmusk S, Wagner EGH (1999) The plant-growth-promoting Rhizobacterium Paenibacillus polymyxa Induces Changes in Arabidopsis thaliana Gene Expression: a Possible Connection Between Biotic and Abiotic Stress Responses. Mol Plant Microbe Interact 12:951–959PubMedCrossRefGoogle Scholar
  295. Tjeerd van Rij E, Wesselink M, Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2004) Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol Plant Microbe Interact 17:557–566PubMedCrossRefGoogle Scholar
  296. Toussoun TA, Menzinger W, Smith RS Jr (1969) Role of conifer litter in ecology of Fusarium: stimulation of germination in soil. Phytopathology 59:1396–1399Google Scholar
  297. Townsend RJ, Glare TR, Willoughby BE (1995) The fungi Beauveria spp. cause epizootics in grass grub populations in Waikato. NZ Plant Protection 48:237–241Google Scholar
  298. Townsend RJ, Ferguson CM, Proffitt JR, Slay MWA, Swaminathan J, Day S, Gerard E, O’Callaghan M, Johnson VW, Jackson TA (2004) Establishment of Serratia entomophila after application of a new formulation for grass grub control. NZ Plant Protection 57:310–313Google Scholar
  299. Toyota K, Ritz K, Young IM (1996) Microbiological factors affecting the colonisation of soil aggregates by Fusarium oxysporum f. sp. raphani. Soil Biol Biochem 28:1513–1521CrossRefGoogle Scholar
  300. Traugott M, Weissteiner S, Strasser H (2005) Effects of the entomopathogenic fungus Beauveria brongniartii on the non-target predator Poecilus versicolor (Coleoptera: Carabidae). Biol Control 33:107–112CrossRefGoogle Scholar
  301. Trillas MI, Casanova E, Cotxarrera L, Ordovas J, Borrero C, Aviles M (2006) Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. Biol Control 39:32–38CrossRefGoogle Scholar
  302. Trillas-Gay MI, Hoitink HAJ, Madden LV (1986) Nature of suppression of Fusarium wilt of radish in a container medium amended with composted hardwood bark. Plant Dis 70:1023–1027CrossRefGoogle Scholar
  303. Trudgill DL, Blok VC, Bala G, Daudi A, Davies KG, Gowen SR, Fargette M, Madulu JD, Mateille T, Mwageni W, Netscher C, Phillips MS, Sawadogo A, Trivino CG, Voyoukallou E (2000) The importance of tropical root-knot nematodes (Meloidogyne spp.) and factors affecting the utility of Pasteuria penetrans as a biocontrol agent. Nematology 2:823–845CrossRefGoogle Scholar
  304. Vagelas IK, Pembroke B, Gowen SR, Davies KG (2007) The control of root-knot nematodes (Meloidogyne spp.) by Pseudomonas oryzihabitans and its immunological detection on tomato roots. Nematology 9:363–370CrossRefGoogle Scholar
  305. Van Driesche RG, Bellows TSJ (1996) Biological control. Chapman & Hall, New York, p 539CrossRefGoogle Scholar
  306. Van Peer R, Schippers B (1992) Lipopolysacchamdes of plant growth promoting Pseudomanas sp. strain WCC5417r induce resistance in carnations to Fusarium wilt. Neth J Plant Pathol 98:129–139CrossRefGoogle Scholar
  307. Vanninen I, Tyni-Juslin J, Hokkanen H (2000) Persistence of augmented Metarhizium anisopliae and Beauveria bassiana in Finnish agricultural soils. Biocontrol 45:201–222CrossRefGoogle Scholar
  308. Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82CrossRefGoogle Scholar
  309. Vercambre B, Goebel O, Riba G, Marchal M, Neuvéglise C, Ferron P (1994) Success in microbial control of a soil pest, Hoplochelus marginalis, in Reunion Island; choice of a suitable fungus. In: Proceedings of the VIth international colloquium on invertebrate pathology and microbial control, SIP, Montpellier, France, pp 283–288Google Scholar
  310. Veseley D, Hejdanek S (1984) Microbial relations of Pythium oligandrum and problems in the use of this organism for the biological control of damping-off in sugar beet. Zbl Mikrobiol 139:257–265Google Scholar
  311. Vey A, Hoagland RE, Butt TM (2001) Toxic metabolites of fungal biocontrol agents. In: Butt TM (ed) Fungi as biocontrol agents: progress, problems and potential. CABI Publishing, Wallingford, UK, pp 311–346CrossRefGoogle Scholar
  312. Villani MG, Krueger SR, Schroeder PC, Consolie F, Consolie NH, Preston-Wilsey LM, Roberts DW (1994) Soil application effects of Metarhizium anisopliae on Japanese beetle (Coleoptera: Scarabaeidae) behavior and survival in turfgrass microcosms. Environ Entomol 23:502–513Google Scholar
  313. Vinale F, Krishnapillai S, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma-­plant-pathogen interactions. Soil Biol Biochem 40:1–10CrossRefGoogle Scholar
  314. Vincent C, Goettel MS, Lazarovits G (2007) Biological control: a global perspective. CAB International, Wallingford, UK, p 440CrossRefGoogle Scholar
  315. Visnovsky GA, Smalley DJ, O’Callaghan M, Jackson TA (2008) Influence of culture medium ­composition, dissolved oxygen concentration and harvesting time on the production of Serratia entomophila, a microbial control agent of the New Zealand grass grub. Biocontrol Sci Technol 18:87–100CrossRefGoogle Scholar
  316. Wakelin SA, Sivasithamparam K, Cole ALJ, Skipp RA (1999) Saprophytic growth in soil of a strain of Trichoderma koningii. N Z J Agric Res 42:337–345CrossRefGoogle Scholar
  317. Wang C, St Leger RJ (2007) A scorpion neurotoxin increases the potency of a fungal insecticide. Nat Biotechnol 25:1455–1456PubMedCrossRefGoogle Scholar
  318. Wang C, Fan M, Li Z, Butt TM (2004) Molecular monitoring and evaluation of the application of the insect-pathogenic fungus Beauveria bassiana in southeast China. J Appl Microbiol 96:861–870PubMedCrossRefGoogle Scholar
  319. Weindling R (1932) Trichoderma lignorum as a parasite of other soils fungi. Phytopathology 11:273–292Google Scholar
  320. Weindling R (1941) Experimental consideration of the mold toxins of Gliocladium and Trichoderma. Phytopathology 31:991–1003Google Scholar
  321. Weindling R, Emerson OH (1936) The isolation of a toxic substance from the culture filtrate of Trichoderma. Phytopathology 26:1068–1070Google Scholar
  322. Weisbeek PJ, Gerrits H (1999) Iron and biocontrol. In: Stacey G, Keen NT (eds) Plant-microbe interactions. APS Press, St Paul, MN, pp 217–250Google Scholar
  323. Weller DM (1988) Biological control of soil-borne plant pathogens in the rhizosphere with ­bacteria. Annu Rev Phytopathol 26:379–407CrossRefGoogle Scholar
  324. Weller DM (2007) Pseudomonas biological control agents of soil-borne pathogens: looking back over 30 years. Phytopathology 97:250–256PubMedCrossRefGoogle Scholar
  325. Weller DM, Raaijmakers JM, MacSpadden Gardener BB, Thomashow LS (2002) Microbial ­populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348PubMedCrossRefGoogle Scholar
  326. Whipps JM (1997) Interactions between fungi and plant pathogens in soil and the rhizosphere. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell Science, Oxford, pp 47–65Google Scholar
  327. Whipps JW, Gerlagh M (1993) Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycol Res 96:897–907CrossRefGoogle Scholar
  328. Whipps J, Bennett A, Challen M, Hill R, Jiang D, Jones E, McQuilken M, Rinzema A, Rogers C, Stewart A, Tomprefa M (2004) Recent developments in inoculums production and application, ecology and pathogenicity in the biocontrol agent Coniothyrium minitans. Management of Plant Diseases and Arthropod pests by BCAs. IOBC/wprs Bull 27:281–284Google Scholar
  329. Widden P, Cunningham J, Breil B (1988) Decomposition of cotton by Trichoderma species: i­nfluence of temperature, soil type, and nitrogen levels. Can J Microbiol 35:469–473CrossRefGoogle Scholar
  330. Wraight SP, Jackson MA, SLd K (2001) Production, stabilization and formulation of fungal ­biocontrol agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: ­progress, problems and potential. CABI Publishing, Wallingford, UK, pp 253–287CrossRefGoogle Scholar
  331. Wright MS, Osbrink WLA, Lax AR (2002) Transfer of entomopathogenic fungi among Formosan subterranean termites and subsequent mortality. J Appl Entomol 126:20–23CrossRefGoogle Scholar
  332. Wright MS, Raina AK, Lax AR (2005) A strain of the fungus Metarhizium anisopliae for ­s controlling subterranean termites. J Econ Entomol 98:1451–1458PubMedCrossRefGoogle Scholar
  333. Zadworny M, Werner A, Idzikowska K (2004) Behaviour of the hyphae of Laccaria laccata in the presence of Trichoderma harzianum in vitro. Mycorrhiza 14:401–405PubMedCrossRefGoogle Scholar
  334. Zhang J-X, Howell CR, Starr JL (1996) Suppression of Fusarium colonization of cotton roots and Fusarium wilt by seed treatments with Gliocladium virens and Bacillus subtilis. Biocontrol Sci Technol 6:175–187CrossRefGoogle Scholar
  335. Zimmermann G (2007a) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Technol 17:553–596CrossRefGoogle Scholar
  336. Zimmermann G (2007b) Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol 17:879–920CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Alison Stewart
    • 1
  • Michael Brownbridge
    • 2
  • Robert A. Hill
    • 1
  • Trevor A. Jackson
    • 3
  1. 1.Bio-protection Research CentreLincoln UniversityCanterburyNew Zealand
  2. 2.Vineland Research and innovation CenterVineland StationCanada
  3. 3.AgResearchChristchurchNew Zealand

Personalised recommendations