Stress and Developmental Strategies in Lichens

Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 17)

Abstract

In the very beginning, the lichen was simply noticed as a very enigmatic, but uniform plant with an unusual appearance and structure.

In the end of the nineteenth and early twentieth century, by discovering “symbiosis” as a common strategy of life, lichens were recognized to have a double nature and found to be composed of “a fungus and algae/cyanobacteria” (e.g., Schwendener, 1869).

References

  1. Adler, M.T., Fazio, A., Bertoni, M.D., Rosso, M.L., Maier, M.S. and Thell, A. (2004) Culture ­experiments and DNA-verification of a mycobiont isolated from Punctelia subpraesignis (Parmeliaceae, lichenized Ascomycotina). Biblioth. Lichenol. 88: 1–8.Google Scholar
  2. Ahmadjian, V. (1973) Methods of isolating and culturing lichen symbionts and thalli, In: V. ­Ahmadjian and M.E. Hale (eds.) The Lichens. Academic Press, New York/ London, pp. 653–659.CrossRefGoogle Scholar
  3. Ahmadjian, V. (1980) Guide to the culture collection of lichen symbionts. Int. Lichenol. Newsl. 13: 13–16.Google Scholar
  4. Ahmadjian, V. (1993) The Lichen Symbiosis. Wiley, New York, 250 p.Google Scholar
  5. Ahmadjian, V. and Reynolds, J.T. (1961) Production of biologically active compounds by isolated lichenized fungi. Science 133: 700–701.PubMedCrossRefGoogle Scholar
  6. Ahti, T. and Marcelli, M. (1995) Taxonomy of the Cladonia verticillaris complex in South America. Biblioth. Lichenol. 58: 5–26.Google Scholar
  7. Bonnier, G. (1887) La constitution des lichens. J. Botanique (M. Louis Morot) 1: 1–5.Google Scholar
  8. Bonnier, G. (1889) Recherche sur la synthèse des lichens. Ann. Sci. Nat., 7e Ser. 9: 1–34.Google Scholar
  9. Brunauer, G., Hager, A., Grube, M., Türk, R. and Stocker-Wörgötter, E. (2007) Alterations in ­secondary metabolism of aposymbiotically grown mycobionts of Xanthoria elegans and cultured resynthesis stages. Plant Physiol. Biochem. 45:146–51.PubMedCrossRefGoogle Scholar
  10. Bubrick, P. and Galun, M. (1985) Spore to spore resynthesis of Xanthoria parietina. Lichenologist 18: 47–49.CrossRefGoogle Scholar
  11. Culberson, C.F. and Armaleo, D. (1992) Induction of a complete secondary-product pathway in a cultured lichen fungus. Exp. Mycol. 16: 52–63.CrossRefGoogle Scholar
  12. Culberson, C.F., Culberson, W.L. and Johnson, A. (1992) Characteristic lichen products in cultures of chemotypes of the Ramalina siliquosa complex. Mycologia 84: 705–714.CrossRefGoogle Scholar
  13. Elix, J.A. and Stocker-Wörgötter, E. (2008) Biochemistry and secondary metabolites, In: T.H. Nash III (ed.) Lichen Biology, 2nd ed. Cambridge University Press, Cambridge, pp. 104–133.Google Scholar
  14. Elix, J.A., Whitton, A.A. and Sargent, M.V. (1984) Recent progress in the chemistry of lichen ­substances. Fortschr. Chem. Org. Naturst. 45: 103–234.CrossRefGoogle Scholar
  15. Hager, A., Brunauer, G., Türk, R. and Stocker-Wörgötter, E. (2008) Production and bioactivity of common lichen metabolites as exemplified by Heterodea muelleri (Hampe) Nyl. J. Chem. Ecol. 34: 113–120.PubMedCrossRefGoogle Scholar
  16. Hallbauer, D.K., Jahns, H.M. and Beltman, H.A. (1977) Morphological and anatomical observations on some precambrian plants from the Witwatersrand, South Africa. Geol. Rundschau 66: 477–491.CrossRefGoogle Scholar
  17. Hamada, N., Miyagawa, H., Miyawaki, H. and Inoue, M. (1996) Lichen substances in mycobionts of crustose lichens cultured on media with extra sucrose. Bryologist 99: 71–74.CrossRefGoogle Scholar
  18. Hamada, N. and Ueno, T. (1987) Depside from an isolated lichen mycobiont. Agr. Biol. Chem. 51: 1705–1706.CrossRefGoogle Scholar
  19. Hammer, S. (1996) Modular growth in verticillate podetia of Cladonia. Mycologia 88: 533–538.CrossRefGoogle Scholar
  20. Hammer, S. (2000) Meristem growth dynamics and branching patterns in the Cladoniaceae. Am. J. Bot. 87: 33–47.PubMedCrossRefGoogle Scholar
  21. Hawksworth, D.L. (1982) Secondary fungi in lichen symbioses: parasites, saprophytes and parasymbionts. J. Hatt. Bot. Lab. 52: 357–366.Google Scholar
  22. Honegger, R. (1986) Ultrastructural studies in lichens. II. Mycobiont and photobiont cell-wall surface-layers and adhering crystalline lichen products in 4 Parmeliaceae. New Phytol. 103: 797–808.CrossRefGoogle Scholar
  23. Honegger, R. (1992) Lichens: mycobiont-photobiont relationships, In: W. Reisser (ed.) Algae and ­Symbioses: Plants, Animals, Fungi, Viruses, Interactions Explored. Biopress, Bristol, pp. 255–275.Google Scholar
  24. Honegger, R. (1993) Developmental biology of lichens. New Phytol. 125: 659–677.CrossRefGoogle Scholar
  25. Honegger, R. (2001) The symbiotic phenotype of lichen-forming ascomycetes, In: B. Hock (ed.) The Mycota IX. Fungal Associations. Springer-Verlag, Berlin, pp. 165–188.Google Scholar
  26. Jahns, H.M. (1987) New trends in developmental morphology of the thallus. Biblioth. Lichenol. 25: 17–33.Google Scholar
  27. Kinoshita, Y. (1993) The Production of Lichen Substances for Pharmaceutical use by Lichen Tissue Culture. Nippon Paint Publications, Osaka.Google Scholar
  28. Kinoshita, Y., Hayase, S., Yamamoto, Y., Yoshimura, I., Kurokawa, T., Ahti, T. and Yamada, Y. (1993) Morphogenetic capacity of the mycobiont in Usnea (Lichenized Ascomycete). Proc. Jpn. Acad. B Phys. Biol. Sci. 69: 18–21.CrossRefGoogle Scholar
  29. Kranner, I., Cram, W.J., Zorn, M., Wornik, S., Yoshimura, I., Stabentheiner, E. and Pfeifhofer H.W. (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc. Natl. Acad. Sci. U.S.A. 102: 3141–3146.PubMedCrossRefGoogle Scholar
  30. Molina, M.C., Crespo, A., Vicente, C. and Elix, J.A. (2003) Differences in the composition of ­phenolics and fatty acids of cultured mycobiont and thallus of Physconia distorta. Plant Physiol. Biochem. 41: 175–180.CrossRefGoogle Scholar
  31. Piercey-Normore, M.D. (2004) Selection of algal genotypes by three species of lichen fungi in the genus Cladonia. Can. J. Bot. 82: 947–961.CrossRefGoogle Scholar
  32. Piercey-Normore, M.D. (2005) Lichens from the Hudson Bay lowlands: Northeastern coastal regions of Wapusk National Park in Manitoba. Can. J. Bot. 83: 1029–1038.CrossRefGoogle Scholar
  33. Piercey-Normore, M.D. (2006) The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii. New Phytol. 169: 331–344.PubMedCrossRefGoogle Scholar
  34. Piercey-Normore, M.D., DePriest, P.T. 2001. Algal switching among lichen symbioses. Am. J. Bot. 88: 1490–1498.PubMedCrossRefGoogle Scholar
  35. Sagan, D. and Margulis, L. (1986) Origins of Sex: Three Billion Years of Genetic Recombination. Yale University Press, New Haven.Google Scholar
  36. Sanders, W.B. (2001a) Composite lichen thalli of Sticta sp from Brazil, with morphologically similar lobes containing either a chlorobiont or a cyanobiont layer. Symbiosis 31: 47–55.Google Scholar
  37. Sanders, W.B. (2001b) Lichens: The interface between mycology and plant morphology. Bioscience 51: 1025–1035.CrossRefGoogle Scholar
  38. Sanders, W.B. (2006) A feeling for the superorganism: expression of plant form in the lichen thallus. Bot. J. Linn. Soc. 150: 89–99.CrossRefGoogle Scholar
  39. Sanders, W.B. and Ascaso, C. (1995) Reiterative production and deformation of cell-walls in expanding Thallus nets of the lichen Ramalina menziesii (Lecanorales, Ascomycetes). Am. J. Bot. 82: 1358–1366.CrossRefGoogle Scholar
  40. Schuster, G., Ott, S. and Jahns, H.M. (1985) Artificial cultures of lichens in the natural environment. Lichenologist 17: 247–253.CrossRefGoogle Scholar
  41. Schwendener, S. (1869) Die Algentypen der Flechtengonidien. Programm für die Rectorsfeier der ­Universität Basel 4: 1–42.Google Scholar
  42. Stahl, E. (1877) Beiträge zur Entwicklungsgeschichte der Flechten. Felix, Leipzig.Google Scholar
  43. Stenroos, S., Stocker-Wörgötter, E., Yoshimura, I., Myllys, L., Thell, A. and Hyvönen, J. (2003) ­Culture experiments and DNA sequence data confirm the identity of Lobaria photomorphs. Can. J. Bot. 81: 232–247.CrossRefGoogle Scholar
  44. Stocker-Wörgötter, E. (1998) Culture methods and culture of selected tropical mycobionts and photobionts as exemplified by South American lichens, In: M.P. Marcelli and M.R.D. Seaward (eds.) Lichenology in Latin America: History, Current Knowledge and Applications. CETESB, Sao Paulo, pp. 145–154.Google Scholar
  45. Stocker-Wörgötter, E. (2001) Experimental studies of the lichen symbiosis: DNA-analyses, differentiation and secondary chemistry of selected mycobionts, artificial resynthesis of two- and tripartite symbioses. Symbiosis 30: 207–227.Google Scholar
  46. Stocker-Wörgötter, E. (2002a) Resynthesis of photosymbiodemes, In: I. Kranner, R.P. Beckett and A.K. Varma (eds.) Methods in Lichenology. Springer Lab Manual. Springer Verlag, Heidelberg/New York, pp. 47–60.Google Scholar
  47. Stocker-Wörgötter, E. (2002b) Analysis of secondary compounds in cultured mycobionts, In: I. ­Kranner, R.P. Beckett and A.K. Varma (eds.) Methods in Lichenology. Springer Lab Manual. Springer ­Verlag, Heidelberg/New York, pp. 296–306.Google Scholar
  48. Stocker-Wörgötter, E. (2005) Approaches to a biotechnology of lichen-forming fungi: Induction of polyketide pathways and the formation of chemosyndromes in axenically cultured mycobionts. Recent Res. Dev. Phyt. 9: 115–131.Google Scholar
  49. Stocker-Wörgötter, E. (2008) Metabolic diversity of lichen forming, ascomycetous fungi: culturing, production of polyketides and shikimi acid derivatives, and PKS genes. Nat. Prod. Rep. 24: 188–200.CrossRefGoogle Scholar
  50. Stocker-Wörgötter, E. and Elix, J.A. (2002) Secondary chemistry of cultured mycobionts: formation of a complete chemosyndrome by the lichen fungus of Lobaria spathulata. Lichenologist 34: 351–359.CrossRefGoogle Scholar
  51. Stocker-Wörgötter, E. and Elix, J.A. (2004) Experimental studies of lichenized fungi: formation of rare depsides and dibenzofurans by the cultured mycobiont of Bunodophoron patagonicum ­(Sphaerophoraceae, lichenized Ascomycota). Biblioth. Lichenol. 88: 659–669.Google Scholar
  52. Stocker-Wörgötter, E. and Elix, J.A. (2006) Morphogenetic strategies and induction of secondary metabolite biosynthesis in cultured lichen-forming Ascomycota, as exemplified by Cladia retipora (Labill.) Nyl. and Dactylina arctica (Richards) Nyl. Symbiosis 41: 9–20.Google Scholar
  53. Stocker-Wörgötter, E., Elix, J.A. and Grube, M. (2004) Secondary chemistry of lichen-forming fungi: Chemosyndromic variation and DNA-analyses of cultures and chemotypes in the Ramalina ­farinacea complex. Bryologist 107: 152–162.CrossRefGoogle Scholar
  54. Stocker-Wörgötter, E. and Hager, A. (2008) Culture methods for lichens and lichen symbionts, In: T.H. Nash III (ed.) Lichen Biology. 2nd ed. Cambridge University Press, Cambridge, pp. 353–363.CrossRefGoogle Scholar
  55. Stocker-Wörgötter, E. and Türk, R. (1987) Die Resynthese der Flechte Verrucaria macrostoma unter Laborbedingungen. Nova Hedwigia 44: 55–68.Google Scholar
  56. Stocker-Wörgötter, E. and Türk, R. (1988) Licht- und elektronenmikroskopische Untersuchungen von Entwicklungsstadien der Flechte Endocarpon pusillum. Plant Syst. Evol. 158: 313–328.CrossRefGoogle Scholar
  57. Stocker-Wörgötter, E. and Türk, R. (1989) Laborversuche zur Kultivierung von Blatt- und ­Strauchflechten und deren Komponenten. Nova Hedwigia 48: 207–228.Google Scholar
  58. Thomas, EA. (1939) Über die Biologie von Flechtenbildnern. Beitr. Kryptogamenflora Schweiz 9: 1–208.Google Scholar
  59. Vinces, M.D., Haas, C. and Kumamoto, C.A. (2006) Expression of the Candida albicans morpho­genesis regulator gene CZF1 and its regulation by Efg1p and Czf1p. Eukaryot. Cell 5: 825–835.PubMedCrossRefGoogle Scholar
  60. Yamamoto, Y., Kinoshita, Y., Kurokawa, T., Yoshimura, I., Ahmadjian, V. and Yamada, Y. (1995) Cell-growth and pigment production in suspension cultures of a mycobiont isolated from the lichen Cladonia cristatella. Can. J. Bot. 73: 590–594.CrossRefGoogle Scholar
  61. Yamamoto, Y., Mizuguchi, R. and Yamada, Y. (1985) Tissue culture of Usnea rubescens and Ramalina yasudae and production of usnic acid in their cultures. Agricult. Biol. Chem. 49: 3347–3348.CrossRefGoogle Scholar
  62. Yoshimura, I., Kinoshita, Y., Yamamoto, Y., Huneck, S. and Yamada, Y. (1994) Analysis of ­secondary ­metabolites from lichens by High Performance Liquid Chromatography. Phytochem. Anal. 5: 197–205.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Organismic BiologyUniversity of SalzburgSalzburgAustria

Personalised recommendations