Arbuscular Mycorrhizal Symbiosis Under Stress Conditions: Benefits and Costs

  • Hinanit KoltaiEmail author
  • Yoram Kapulnik
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 17)


Mycorrhization is a highly prevalent association of plants with fungi. Most plant species harbor symbioses with arbuscular mycorrhizal fungi (AMF), which take place within the plant roots. Arbuscular mycorrhizal (AM) symbiosis plays a major role in ecosystems, facilitating nutrient cycling by providing plants with essential nutrients. The AMF are members of the fungal phylum Glomeromycota (Schüssler et al., 2001) and form symbiotic associations with most terrestrial vascular flowering plants (Smith and Read, 1997). In addition to increasing nutrient uptake, other key contributions of AMF to plants have been recorded, including improved rooting and plant establishment, improved vegetative growth, and accelerated budding and flowering (Smith and Read, 1997). Moreover, the plant–AMF symbiosis has been shown to promote the plant’s ability to withstand numerous abiotic stress conditions. This phenomenon is the subject of the present review.


Arbuscular Mycorrhizal Fungus Arbuscular Mycorrhizal Mycorrhizal Plant Arbuscular Mycorrhizal Fungus Colonization Depletion Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by The Israeli Ministry of Agriculture.


  1. Al-Karaki, G.N. (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10: 51–54.CrossRefGoogle Scholar
  2. Al-Karaki, G.N., Hammad, R. and Rusan, M. (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11: 43–47.CrossRefGoogle Scholar
  3. Allen, M.F. and Boosalis, M.G. (1983) Effects of two species of VA mycorrhizal fungi on drought tolerance of winter wheat. New Phytol. 93: 67–76.CrossRefGoogle Scholar
  4. Aroca, R., Vernieri, P. and Ruiz-Lozano, J.M. (2008) Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J. Exp. Bot. 59: 2029–2041.PubMedCrossRefGoogle Scholar
  5. Augé, R.M. (1989) Do VA mycorrhiza enhance transpiration by influencing host phosphorus status? J. Plant Nutr. 12: 743–753.CrossRefGoogle Scholar
  6. Augé, R.M. (2001) Water relations, drought and VA mycorrhizal symbiosis. Mycorrhiza 11: 3–42.CrossRefGoogle Scholar
  7. Augé, R.M., Scheckel, K.A. and Wample, R.L. (1986) Greater leaf conductance of well-watered VA mycorrhizal rose plants is not related to phosphorus nutrition. New Phytol. 103: 107–116.CrossRefGoogle Scholar
  8. Augé, R.M., Scheckel, K.A. and Wample, R.L. (1987) Leaf water and carbohydrate status of VA mycorrhizal rose exposed to water deficit stress. Plant Soil 99: 291–302.CrossRefGoogle Scholar
  9. Augé, R.M., Stodola, A.J.W., Brown, M.S. and Bethlenfalvay, G.J. (1992) Stomatal responses of mycorrhizal cowpea and soybean to short-term osmotic stress. New Phytol. 120: 117–125.CrossRefGoogle Scholar
  10. Augé, R.M., Stodola, A.J.W., Tims, J.E. and Saxton, A.M. (2001) Moisture retention properties of a mycorrhizal soil. Plant Soil 230: 87–97.CrossRefGoogle Scholar
  11. Augé, R.M., Moore, J.L., Sylvia, D.M. and Cho, K. (2004) Mycorrhizal promotion of host stomatal conductance in relation to irradiance and temperature. Mycorrhiza 14: 85–92.PubMedCrossRefGoogle Scholar
  12. Augé, R.M., Toler, H.D., Sams, C.E. and Nasim, G. (2008) Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza 18: 115–121.PubMedCrossRefGoogle Scholar
  13. Azcón, R. and El-Atrash, F. (1997) Influence of arbuscular mycorrhizae and phosphorus fertilization on growth, nodulation and N2 (N-15) in Medicago sativa at four salinity levels. Biol. Fertility Soils 24: 81–86.CrossRefGoogle Scholar
  14. Balestrini, R. and Bonfante, P. (2005) The interface compartment in arbuscular mycorrhizae: a special type of plant cell wall? Plant Biosyst. 139: 8–15.CrossRefGoogle Scholar
  15. Balestrini, R. and Lanfranco, L. (2006) Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. Mycorrhiza 16: 509–524.PubMedCrossRefGoogle Scholar
  16. Bécard, G., Kosuta, S., Tamasloukht, M., Séjalon-Delmas, N. and Roux, C. (2004) Partner communication in the arbuscular mycorrhizal interaction. Can. J. Bot. 82: 1186–1197.CrossRefGoogle Scholar
  17. Benedetto, A., Magurno, F., Bonfante, P. and Lanfranco, L. (2005) Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza 15: 620–627.PubMedCrossRefGoogle Scholar
  18. Ben Khaled, L., Gomez, A.M., Ouarraqi, E.M. and Oihabi, A. (2003) Physiological and biochemical responses to salt stress of mycorrhized and/or nodulated clover seedlings (Trifolium alexandrinum L.). Agronomie 23: 571–580.CrossRefGoogle Scholar
  19. Bereau, M., Barigah, T.S, Louisanna, E. and Garbaye, J. (2000) Effects of endomycorrhizal development and light regimes on the growth of Dicorynia guianensis Amshoff seedlings Ann. Forest Sci. 57: 725–733.CrossRefGoogle Scholar
  20. Bethlenfalvay, G.J., Brown, M.S., Mihara, K.L. and Stafford, A.E. (1987) The Glycine-Glomus-Bradyrhizobium symbiosis. V. Effects of mycorrhiza on nodule activity and transpiration in soybean under drought stress. Plant Physiol. 85: 115–119.PubMedCrossRefGoogle Scholar
  21. Blokhina, O., Virolainen, E. and Fagerstedt, K.V. (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91: 179–194.PubMedCrossRefGoogle Scholar
  22. Bolandnazar, S., Aliasgarzad, N., Neishabury, M.R. and Chaparzadeh, N. (2007) Mycorrhizal colonization improves onion (Allium cepa L.) yield and water use efficiency under water deficit condition. Scientia Hort. 114: 11–15.CrossRefGoogle Scholar
  23. Brundrett, M.C. (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol. 154: 275–304.CrossRefGoogle Scholar
  24. Bucher, M. (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol. 173: 11–26.PubMedCrossRefGoogle Scholar
  25. Buée, M., Rossignol, M., Jauneau, A., Ranjeva, R. and Bécard, G. (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol. Plant-Microbe Interact. 13: 693–698.PubMedCrossRefGoogle Scholar
  26. Cho, K., Toler, H., Lee, J., Ownley, B., Stutz, J.C., Moore, J.L. and Augé, R.M. (2006) Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. J. Plant Physiol. 163: 517–528.PubMedCrossRefGoogle Scholar
  27. Colla, G., Rouphael, Y., Cardarelli, M., Tullio, M., Rivera, C.M. and Rea, E. (2008) Alleviation of salt stress by arbuscular mycorrhizal(e?) in zucchini plants grown at low and high phosphorus concentration. Biol. Fertil. Soils 44: 501–509.CrossRefGoogle Scholar
  28. David-Schwartz, R., Badani, H., Wininger, S., Levy, A., Galili, G. and Kapulnik, Y. (2001) Identification of a novel genetically controlled step in mycorrhizal colonization: plant resistance to infection by fungal spores but not extra-radical hyphae. Plant J. 27: 561–569.PubMedCrossRefGoogle Scholar
  29. David-Schwartz, R., Gadkar, V., Wininger, S., Bendov, R., Galili, G., Levy, A. and Kapulnik, Y. (2003) Isolation of a pre-mycorrhizal infection (pmi2) mutant of tomato, resistant to arbuscular mycorrhizal fungal colonization. Mol. Plant–Microbe Interact. 16: 382–388.PubMedCrossRefGoogle Scholar
  30. Davies, F.T., Potter, J.R. and Linderman, R.G. (1993) Drought resistance of mycorrhizal pepper plants independent of leaf P-concentration—response in gas exchange and water relations. Physiologia Planta. 87: 45–53.CrossRefGoogle Scholar
  31. Douds, D.D.J., Pfeffer, P.E. and Shachar-Hill, Y. (2000) Carbon partitioning, cost, and metabolism of arbuscular mycorrhizas, In: Y. Kapulnik and D.D.J. Douds (eds.) Arbuscular Mycorrhizas: Physiology and Function. Kluwer, Dordrecht, The Netherlands, pp. 107–129.CrossRefGoogle Scholar
  32. Duan, X., Newman, D.S., Reiber, J.M., Green, C.D., Saxton, A.M. and Augé, R.M. (1996) Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. J. Exp. Bot. 47: 1541–1550.CrossRefGoogle Scholar
  33. Feng, G., Zhang, F.S., Li, X.L., Tian, C.Y., Tang, C. and Rengel, Z. (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12: 185–190.PubMedCrossRefGoogle Scholar
  34. Gadkar, V., David-Schwartz, R., Kunik, T. and Kapulnik, Y. (2001) Arbuscular mycorrhizal fungal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before colonization. Factors involved in host recognition. Plant Physiol. 127: 1493–1499.PubMedCrossRefGoogle Scholar
  35. Genre, A. and Bonfante, P. (2005) Building a mycorrhizal cell: how to reach compatibility between plants and arbuscular mycorrhizal fungi. J. Plant Interact. 1: 3–13.CrossRefGoogle Scholar
  36. Genre, A., Chabaud, M., Timmers, T., Bonfante, P. and Barker, D.G. (2005) Arbuscular mycorrhizal infection. Plant Cell 17: 3489–3499.PubMedCrossRefGoogle Scholar
  37. Gianinazzi-Pearson, V. and Brechenmacher, L. (2004) Functional genomics of arbuscular mycorrhiza: decoding the symbiotic cell programme. Can. J. Bot. 82: 1228–1234.CrossRefGoogle Scholar
  38. Gianinazzi-Pearson, V., Branzanti, B. and Gianinazzi, S. (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7: 243–255.Google Scholar
  39. Giovannetti, M., Avio, L., Sbrana, C. and Citernesi, A.S. (1993a) Factors affecting appressorium development in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe. New Phytol. 123: 115–122.CrossRefGoogle Scholar
  40. Giovannetti, M., Sbrana, C., Avio, L., Citernesi, A.S. and Logi, C. (1993b) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages. New Phytol. 125: 587–593.CrossRefGoogle Scholar
  41. Giovannetti, M., Sbrana, C. and Logi, C. (1994) Early processes involved in host recognition by arbuscular mycorrhizal fungi. New Phytol. 127: 703–709.CrossRefGoogle Scholar
  42. Giri, B. and Mukerji, K.G. (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14: 307–312.PubMedCrossRefGoogle Scholar
  43. Goicoechea, N., Antolin, M.C. and Sánchez-Díaz, M. (1997) Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiologia Planta. 100: 989–997.CrossRefGoogle Scholar
  44. Hamblin, A.P. (1985) The influence of soil structure on water movement, crop root growth, and water uptake. Adv. Agron. 38: 95–158.CrossRefGoogle Scholar
  45. Harrison, M.J. (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu. Rev. Microbiol. 59: 19–42.PubMedCrossRefGoogle Scholar
  46. Harrison, M.J. and van Buuren, M.L. (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378: 626–629.PubMedCrossRefGoogle Scholar
  47. Harrison, M.J., Dewbre, G.R. and Liu, J. (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14: 2413–2429.PubMedCrossRefGoogle Scholar
  48. Hause, B. and Fester, T. (2005) Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221: 184–196.PubMedCrossRefGoogle Scholar
  49. Hetrick, B.A.D., Gerschefske, K. and Wilson, G.T. (1987) Effects of drought stress on growth response in corn, sudan grass, and big bluestem to Glomus etunicatum. New Phytol. 105: 403–410.CrossRefGoogle Scholar
  50. Hoekstra, F.A., Golovina, E.A. and Buitink, J. (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci. 6: 431–438.PubMedCrossRefGoogle Scholar
  51. Jahromi, F., Aroca, R., Porcel, R. and Ruiz-Lozano, J.M. (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecol. 55: 45–53.CrossRefGoogle Scholar
  52. Jastrow, J.D. and Miller, R.M. (1991) Methods for assessing the effects of biota on soil structure. Agric. Ecosys. Environ. 34: 279–303.CrossRefGoogle Scholar
  53. Jindal, V., Atwal, A., Sekhon, B.S., Rattan, S. and Singh, R. (1993) Effect of vesicular-arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity. Plant Physiol. Biochem.31: 475–481.Google Scholar
  54. Karandashov, V. and Bucher, M. (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci. 10: 22–29.PubMedCrossRefGoogle Scholar
  55. Klironomos, J.N. (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84: 2292–2301.CrossRefGoogle Scholar
  56. Koltai, H., Gadkar, V. and Kapulnik, Y. (2010) Biochemical and practical views of arbuscular mycorrhizal fungus-host association in horticultural crops, In: J. Janick (ed.) Horticultural Reviews. Wiley36: 257–287.Google Scholar
  57. Kramer, P.J. and Boyer, J.S. (1997) Water Relations of Plants and Soils. Academic Press, San Diego, CA.Google Scholar
  58. Kyllo, D.A., Velez, V.T. and Melvin, T. (2003) Combined effects of arbuscular mycorrhizas and light on water uptake of the neotropical understory shrubs, Piper and Psychotria. New Phytol. 160: 443–454.CrossRefGoogle Scholar
  59. Lee, D.W., Krishnapillay, B., Mansor, M., Mohamad, H. and Yap, S.K. (1996) Irradiance and spectral quality affect Asian tropical rain forest seedling development. Ecology 77: 568–580.CrossRefGoogle Scholar
  60. Maldonado-Mendoza, I.E., Dewbre, G.R. and Harrison, M.J. (2001) A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol. Plant-Microbe Interact 14: 1140–1148.PubMedCrossRefGoogle Scholar
  61. Marschner, H. (1995) Mineral Nutrition of Higher Plants, 2nd ed. Academic Press, Cambridge.Google Scholar
  62. Menge, J.A., Steirle, D., Bagyaraj, D.J., Johnson, E.L.V. and Leonard, R.T. (1978) Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytol. 80: 575–578.CrossRefGoogle Scholar
  63. Morgan, J.M. (1984) Osmoregulation and water stress in higher plants. Annu. Rev. Plant Physiol. 35: 299–319.CrossRefGoogle Scholar
  64. Mosse, B. and Hepper, C. (1975) Vesicular-arbuscular mycorrhizal infections in root organ cultures. Physiol. Plant Pathol. 5: 215–223.CrossRefGoogle Scholar
  65. Munns, R. (2002) Comparative physiology of salt and water stress. Plant Cell Environ. 25: 239–250.PubMedCrossRefGoogle Scholar
  66. Nagahashi, G. and Douds, D.D. (2000) Partial separation of root exudate components and their effects upon the growth of germinated spores of AM fungi. Mycol. Res. 104: 1453–1464.CrossRefGoogle Scholar
  67. Oades, J.M. and Waters, A.G. (1991) Aggregate hierarchy in soils. Austr. J. Soil Res. 29, 815–828.CrossRefGoogle Scholar
  68. Paszkowski, U. (2006) A journey through signaling in arbuscular mycorrhizal symbioses. New Phytol. 172: 35–46.PubMedCrossRefGoogle Scholar
  69. Paszkowski, U., Kroken, S., Roux, C. and Briggs, S.P. (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. U.S.A. 99: 13324–13329.PubMedCrossRefGoogle Scholar
  70. Paszkowski, U., Jakovleva, L. and Boller, T. (2006) Maize mutants affected at distinct stages of the arbuscular mycorrhizal symbiosis. Plant J. 47: 165–173.PubMedCrossRefGoogle Scholar
  71. Pfeiffer, C.M. and Bloss, H.E. (1987) Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular-arbuscular mycorrhiza and phosphorus fertilization. New Phytol. 108: 315–321.CrossRefGoogle Scholar
  72. Pfleger, F.L. and Linderman, R.G. (1994) Mycorrhizae and Plant Health. APS Press, St. Paul, MN.Google Scholar
  73. Pierce, S., Vianelli, A. and Cerabolini, B. (2005) Essay review: from ancient genes to modern communities: the cellular stress response and the evolution of plant strategies. Funct. Ecol. 19: 763–776.CrossRefGoogle Scholar
  74. Pivonia, S., Levita, R., Cohen, S., Gamliel, A., Wininger, S., Ben-Gal, A., Yermiyahu, U. and Kapulnik, Y. (2009) Reducing the effects of biotic and abiotic stresses on pepper cultivated under arid conditions using arbuscular mycorrhizal (AM) technology, In: F. Feldmann, Y. Kapulnik and J. Baar (eds.) Mycorrhiza. Works, ISBN 978-3-8001-8919-9 Deutsche Phytomedizinische Gesellschaft, Braunschweig, Germany, pp. 197–208.Google Scholar
  75. Poirier, Y. and Bucher, M. (2002) Phosphate transport and homeostasis in Arabidopsis, In: C.R. Somerville and E.M. Meyerowitz (eds.) The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD, pp. 1–35.Google Scholar
  76. Porcel, R. and Ruiz-Lozano, J.M. (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J. Exp. Bot. 55: 1743–1750.PubMedCrossRefGoogle Scholar
  77. Porcel, R., Barea, J.M. and Ruiz-Lozano, J.M. (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol. 157: 135–143.CrossRefGoogle Scholar
  78. Purin, S. and Rillig, M.C. (2008) Parasitism of arbuscular mycorrhizal fungi: reviewing the evidence. FEMS Microbiol. Lett. 279: 8–14.PubMedCrossRefGoogle Scholar
  79. Querejeta, J.I., Allen, M.F., Alguacil, M.M. and Roldan, A. (2007) Plant isotopic composition provides insight into mechanisms underlying growth stimulation by AM fungi in a semiarid environment. Funct. Plant Biol. 34: 683–691.CrossRefGoogle Scholar
  80. Raghothama, K.G. (2000) Phosphate transport and signaling. Curr. Opin. Plant Biol. 3: 182–187.PubMedGoogle Scholar
  81. Raskin, I. and Ensley, B.D. (eds.) (2000) Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. Wiley, New York, pp. 15–31.Google Scholar
  82. Rausch, C. and Bucher, M. (2002) Molecular mechanisms of phosphate transport in plants. Planta 216: 23–37.PubMedCrossRefGoogle Scholar
  83. Rausch, C., Daram, P., Brunner, S., Jansa, J., Laloi, M., Leggewie, G., Amrhein, N. and Bucher, M. (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414: 462–470.PubMedCrossRefGoogle Scholar
  84. Reddy, D.M.R.S., Schorderet, M., Feller, U. and Reinhardt, D. (2007) A petunia mutant affected in intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi. Plant J. 51: 739–750.CrossRefGoogle Scholar
  85. Reinhardt, D. (2007) Programming good relations—development of the arbuscular mycorrhizal symbiosis. Curr. Opin. Plant Biol. 10: 98–105.PubMedCrossRefGoogle Scholar
  86. Remy, W., Taylor, T.N., Hass, H. and Kerp, H. (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc. Natl. Acad. Sci. U.S.A. 91: 11841–11843.PubMedCrossRefGoogle Scholar
  87. Requena, N., Serrano, E., Ocon, A. and Breuninger, M. (2007) Plant signals and fungal perception during arbuscular mycorrhiza establishment. Phytochemistry 68: 33–40.PubMedCrossRefGoogle Scholar
  88. Rillig, M.C., Wright, S.F. and Eviner, V.T. (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238: 325–333.CrossRefGoogle Scholar
  89. Rosendahl, C.N. and Rosendahl, S. (1991) Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of cucumber (Cucumis sativis L.) to salt stress. Environ. Exp. Bot. 31: 313–318.CrossRefGoogle Scholar
  90. Ruiz-Lozano, J.M. (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13: 309–317.PubMedCrossRefGoogle Scholar
  91. Ruiz-Lozano, J.M. and Azcón, R. (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10: 137–143.CrossRefGoogle Scholar
  92. Ruiz-Lozano, J.M., Azcón, R. and Gómez, M. (1995a) Effects of arbuscular mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Appl. Environ. Microbiol. 61: 456–460.PubMedGoogle Scholar
  93. Ruiz-Lozano, J.M., Gómez, M. and Azcón, R. (1995b) Influence of different Glomus species on the time-course of physiological plant responses of lettuce to progressive drought stress periods. Plant Sci.110: 37–44.CrossRefGoogle Scholar
  94. Ruiz-Lozano, J.M., Azcón, R. and Gomez, M. (1996a) Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiol. Plant 98: 767–772.CrossRefGoogle Scholar
  95. Ruiz-Lozano, J., Azcón, R. and Palma, J.M. (1996b) Superoxide dismutase activity in arbuscular-mycorrhizal Lactuca sativa L. plants subjected to drought stress. New Phytol. 134: 327–333.CrossRefGoogle Scholar
  96. Ruiz-Lozano, J.M., Collados, C., Barea, J.M. and Azcón, R. (2001) Cloning of cDNAs encoding SODs from lettuce plants which show differential regulation by arbuscular mycorhizal symbiosis and by drought stress. J. Exp. Bot. 52: 2241–2242.PubMedGoogle Scholar
  97. Sannazzaro, A.I., Echeverría, M., Albertó, E.O., Ruiz, O.A. and Menéndez, A.B. (2007) Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiol. Biochem. 45: 39–46.PubMedCrossRefGoogle Scholar
  98. Schüssler, A., Schwarzott, D. and Walker, C. (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res. 105: 1413–1421.CrossRefGoogle Scholar
  99. Siciliano, V., Genre, A., Balestrini, R., Cappellazzo, G., deWit, P.J. and Bonfante, P. (2007) Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration apparatus. Plant Physiol. 144: 1455–1466.PubMedCrossRefGoogle Scholar
  100. Simpson, D. and Daft, M.J. (1991) Effects of Glomus clarum and water stress on growth and nitrogen fixation in 2 genotypes of groundnut. Agric. Ecosys. Environ. 35: 47–54.CrossRefGoogle Scholar
  101. Smith, S.E. and Read, D.J. (1997) Mycorrhizal Symbiosis, 2nd ed. Academic Press, San Diego, CA.Google Scholar
  102. Smith, S.E., Smith, F.A. and Jakobsen, I. (2003) Mycorrhizal fungi can dominate phosphate supply to plant irrespective of growth responses. Plant Physiol. 133: 16–20.PubMedCrossRefGoogle Scholar
  103. Smith, S.E., Smith, F.A. and Jakobsen, I. (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol. 162: 511–524.CrossRefGoogle Scholar
  104. Stirzaker, R.J. and Passioura, J.B. (1996) The water relations of the root-soil interface. Plant Cell Environ. 19: 201–208.CrossRefGoogle Scholar
  105. Subramanian, K.S. and Charest, C. (1998) Arbuscular mycorrhizae and nitrogen assimilation in maize after drought and recovery. Physiologia Planta. 102: 285–296.CrossRefGoogle Scholar
  106. Thomson, B.D., Robson, A.D., and Abbott, L.K. (1991) Soil mediated effects of phosphorus supply on the formation of mycorrhizas by Scutellispora calospora (Nicol. & Gerd.) Walker & Sanders on subterranean clover. New Phytol. 118: 463–469.CrossRefGoogle Scholar
  107. Vierheilig, H. and Piché, Y. (2002) Signalling in arbuscular mycorrhiza: facts and hypotheses. Adv. Exp. Med. Biol. 505: 23–39.PubMedCrossRefGoogle Scholar
  108. Wilkinson, S. and Davies, W.J. (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ. 25: 195–210.PubMedCrossRefGoogle Scholar
  109. Wu, Q.S. and Xia, R.X. (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J. Plant Physiol. 163: 417–425.PubMedCrossRefGoogle Scholar
  110. Wu, Q., Zou, Y. and Xia, R. (2007) Effect of Glomus versiforme inoculation on reactive oxygen metabolism of Citrus tangerine leaves exposed to water stress. Frontiers of Agriculture in China 1: 438–443.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Ornamental Horticulture, Institute of Plant SciencesAgricultural Research Organization (ARO), the Volcani CenterBet DaganIsrael
  2. 2.Department of Agronomy & Natural Resources, Institute of Plant SciencesAgricultural Research Organization (ARO), the Volcani CenterBet DaganIsrael

Personalised recommendations