Symbioses and Stress pp 225-241

Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 17) | Cite as

Azolla as a Superorganism. Its Implication in Symbiotic Studies

Chapter

Abstract

The symbiosis history begun many million years ago, probably even before the first manifestation of life arose in our planet (Carrapiço et al., 2007). But it was only in the nineteenth century with the presentation in 1867, by the Swiss botanist Simon Schwendener, of the “dual hypothesis” related to the lichens structure, that this “real story” had a scientific starting point for society (Boucher, 1985; Sapp, 1994; Honegger, 2000).

References

  1. Adams, D.G. (2000) Symbiotic interactions, In: B.A. Whitton and M. Potts (eds.) The Ecology of Cyanobacteria. Their Diversity in Time and Space. Kluwer Academic Press, London, pp. 523–561.Google Scholar
  2. Becking, J.H. (1987) Endophyte transmission and activity in the Anabaena-Azolla association. Plant Soil 100: 183–212.CrossRefGoogle Scholar
  3. Bouchard, F. (2007) What is a symbiotic superorganism and how do you measure its fitness? Abstracts of the ISHPSSB Meeting, University of Exeter, Devon, UK, July 25−29, p. 45.Google Scholar
  4. Boucher, D.H. (ed.) (1985) The biology of mutualism. Ecology and Evolution. Oxford University Press, New York.Google Scholar
  5. Braun-Howland, E.B. and Nierzwicki-Bauer, S.A. (1990) Azolla-Anabaena symbiosis: biochemistry, physiology, ultrastructure, and molecular biology, In: A.N. Rai (ed.) CRC Handbook of Symbiotic Cyanobacteria. CRC Press, Boca Raton, FL, pp. 65–117.Google Scholar
  6. Brinkhuis et al. (2006) Episodic fresh surface waters in the Eocene Arctic Ocean. Nature 441: 606–609.PubMedCrossRefGoogle Scholar
  7. Bujak, J. (2007) The Azolla story. Climate change and Arctic hydrocarbons. GEO ExPro September 4 (4): 66–72.Google Scholar
  8. Canini, A., Bergman, B., Civitareale, P., Rotilio, G. and Grilli Caiola, M. (1992) Localization of iron-superoxide dismutase in the cyanobiont of Azolla filiculoides Lam. Protoplasma 169: 1–8.CrossRefGoogle Scholar
  9. Carrapiço, F. (1991) Are bacteria the third partner of the Azolla-Anabaena Symbiosis? Plant Soil 137: 157–160.CrossRefGoogle Scholar
  10. Carrapiço, F. (2002) The Azolla-Anabaena-Bacteria system as a natural microcosm. Proc. SPIE 4495: 261–265.CrossRefGoogle Scholar
  11. Carrapiço, F., Costa, M.H., Costa, M.L., Teixeira, G., Frazão, A.A., Santos, M.C.R. and Baioa, M.V. (1996) The uncontrolled growth of Azolla in the Guadiana River. Aquaphyte 16(2): 11.Google Scholar
  12. Carrapiço, F., Teixeira, G. and Diniz, M.A. (2000) Azolla as biofertiliser in Africa. A challenge for the future. Revista de Ciências Agrárias 23(3–4): 120–138.Google Scholar
  13. Carrapiço, F., Pereira, L. and Rodrigues, T. (2007) Contribution to a symbiogenic approach in astrobiology. Proc. SPIE 6694: 669406-1–669406–10.CrossRefGoogle Scholar
  14. Collinson, M.E., Barke, J., van der Burgh, J. and van Konijnenburg-van Cittert, J.H.A. (2009) A new species of the freshwater fern Azolla (Azollaceae) from the Eocene Arctic Ocean. Rev. Palaeobot. Palynol. 155: 1–14.Google Scholar
  15. Costa, M.L., Santos, M.C.R. and Carrapiço, F. (1999) Biomass characterization of Azolla filiculoides grown in natural ecosystems and wastewater. Hydrobiologia 415: 323–327.CrossRefGoogle Scholar
  16. De Bary, A. (1878) Ueber Symbiose. – Tageblatt 51. Versamml. Deutscher Naturforscher u. Aerzte, Cassel 1878: 121–126.Google Scholar
  17. De Bary, A. (1879) Die Erscheinung der Symbiose. Vortrag auf der Versammlung der Deutschen Naturforscher und Aertze zu Cassel. Verlag von Karl J. Trubner, Strasburg, pp. 1–30.Google Scholar
  18. Douglas, A.E. (1994) Symbiotic Interactions. Oxford University Press, Oxford.Google Scholar
  19. Dubos, R. and Kessler, A. (1963) Integrative and disintegrative factors in symbiotic associations, In: P.S. Nutman and B. Mosse (eds.) Proceedings of the Thirteenth Symposium of the Society for General Microbiology. London, pp. 1–11.Google Scholar
  20. Ekman, M., Tollback, P and Bergman, B. (2008) Proteomic analysis of the cyanobacterium of the Azolla symbiosis: identity, adaptation, and NifH modification. J. Exp. Bot. 59(5): 1023–1034.PubMedCrossRefGoogle Scholar
  21. Evrard, C. and Van Hove, C. (2004) Taxonomical of the American Azolla species (Azollaceae). A critical review. Syst. Geogr. Pl. 74: 301–318.Google Scholar
  22. Feuillée, L. (1725) Journal des observations physiques, mathematiques et botaniques, faites par ordre du roi sur les côtes orientales de l’Amerique Meridionale, & aux Indes Occidentales et dans un autre voyage faite par le même ordre à la nouvelle Espagne, & aux Illes de l’Amerique. Jean Mariette, Paris.Google Scholar
  23. Forni, C., Chen, J., Tancioni, L. and Caiola, M.G. (2001) Evaluation of fern Azolla for growth, nitrogen and phophorus removal from wastewater. Water Res. 35(6): 1592–1598.PubMedCrossRefGoogle Scholar
  24. Frank, A.B. (1877) Ueber die biologischen Verhältnisse des Thallus einiger Krustenflechten. Beitr. Biol. Pfl. 2(2): 123–200.Google Scholar
  25. Grilli, M. (1964) Infrastrutture di Anabaena azollae vivente nelle foglioline di Azolla caroliniana. Ann. Microb. Enzim. 14: 69–90.Google Scholar
  26. Grilli Caiola, M. and Forni, C. (1999) The hard life of prokaryotes in the leaf cavities of Azolla, In: J. Seckbach (ed.) Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Academic, Dordrecht, The Netherlands, pp. 629–639.CrossRefGoogle Scholar
  27. Honegger, R. (2000) Simon Schwendener (1829–1919) and the dual hypothesis of lichens. Bryologist 103: 167–183.CrossRefGoogle Scholar
  28. Lamarck, J-B. (1783) Azolla filiculoides. Encyclopédie Méthodique: Botanique. Tome 1: 343, Paris.Google Scholar
  29. Lechno-Yossef, S. and Nierzwicki-Bauer, S.A. (2002) Azolla-Anabaena symbiosis, In: A.N. Rai, B. Bergman and U. Rasmussen (eds.) Cyanobacteria in Symbiosis. Kluwer, Dordrecht, pp. 153−178.Google Scholar
  30. Lindblad, P., Bergman, B. and Nierzwicki-Bauer, S.A. (1991) Immunocytochemical localization of nitrogenase in bacteria symbiotically associated with Azolla spp, Appl. Environ. Microbiol. 57: 3637–3640.PubMedGoogle Scholar
  31. Lumpkin, T.A. (1993) Azollaceae Wettstein. Azolla Family. Flora N. Am. 2: 338–342.Google Scholar
  32. Monnier, J., Lavondes, A., Jolinon, J-C. and Elouard, P. (1993), In: Association Saint-Guignefort (ed.) Philibert Commerson. Le découvreur du bougainvillier. Châtillon-sur-Chalaronne, France.Google Scholar
  33. Papaefthimiou, D., Van Hove, C., Lejeune, A., Rasmussen, U. and Wilmotte, A. (2008) Diversity and host specificity of Azolla cyanobionts. J. Phycol. 44: 60–70.CrossRefGoogle Scholar
  34. Pereira, A.L. and Carrapiço, F. (2007) Histochemistry of simple hairs from the foliar cavities of Azolla filiculoides. Plant Biosys. 141: 323–328.CrossRefGoogle Scholar
  35. Peters, G.A. and Meeks, J.C. (1989) The Azolla-Anabaena symbiosis: basic biology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 193–210.CrossRefGoogle Scholar
  36. Rai, V., Sharma, N.K., and RTai, A.K. (2006) Growth and cellular ion content of salt-sensitive symbiotic system Azolla pinnata-Anabaena azollae under NaCl stress. J. Plant Physiol. 163: 937–944.PubMedCrossRefGoogle Scholar
  37. Sapp, J. (1994) Evolution by association. A History of Symbiosis. Oxford University Press, New York.Google Scholar
  38. Sapp, J. (2003) Genesis: The evolution of biology. Oxford University Press, New York.Google Scholar
  39. Sapp, J., Carrapiço, F. and Zolotonodov, M. (2002) Symbiogenesis: the hidden face of Constantin Merezhkowsky. Hist. Phil. Life Sci. 24: 421–449.Google Scholar
  40. Schiebinger, L. (2003) Jeanne Barret: the first woman to circumnavigate the globe. Endeavour 27(1): 22–25.PubMedCrossRefGoogle Scholar
  41. Seckback, J. (ed.) (2002) Symbiosis: Mechanisms and Model Systems. Kluwer Academic, Dordrecht, The Netherlands.Google Scholar
  42. Serrano, R., Carrapiço, F. and Vidal, R. (1999) The presence of lectins in bacteria associated with the Azolla-Anabaena symbiosis. Symbiosis 27: 169–178.Google Scholar
  43. Shi, D.J. and Hall, D.O. (1988) Azolla and immobilized cyanobacteria (blue-green algae): from traditional agriculture to biotechnology. Plants Today 1: 5−12.Google Scholar
  44. Strasburger, E. (1873) Uber Azolla. Herman Dabis Verlag, Jena.Google Scholar
  45. Svenson, H.K. (1944) The new world species of Azolla. Am. Fern. J. 34: 69–84.CrossRefGoogle Scholar
  46. Tung, H.F. and Watanabe, I. (1983) Differential response of Azolla-Anabaena associations to high temperature and minus phosphorus treatments. New Phytol. 93: 423–431.CrossRefGoogle Scholar
  47. Uheda, E. (1986) Isolation of hair cells from Azolla filiculoides var. japonica Leaves. Plant Cell Physiol. 27: 1255–1261.Google Scholar
  48. Veys, P., Waterkeyn L, Lejeune, A., Van Hove, C. (1999) The pore of the leaf cavity of Azolla: morphology, cytochemistry and possible functions. Symbiosis 27: 33–57.Google Scholar
  49. Zook, D. (1998) A new symbiosis language, ISS Symbiosis News March 1998, 1 (3): 1–3.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Faculty of Science, Department of Plant Biology, Centre for Environmental BiologyUniversity of LisbonLisboaPortugal

Personalised recommendations