Reflections on a Life of CNAPS: From Circulating DNA to the Virtosome

  • Maurice Stroun
Conference paper


In the late 1950s and early 1960s, a theoretical fight occurred between Western and Russian scientists concerning the theory explaining the mechanism of evolution. Was evolution the result of mutations occurring by chance so favouring the survival of the fittest or were acquired characteristics, through a different surrounding, the basis of evolution? For the western geneticists the lack of contact between the soma and the germen prevented the transmission to the next generation of a modification appearing in part of a pluricellular organism. By proposing and demonstrating the existence of circulating DNA that is contained in a nucleoprotein particle – the virtosome – we refuted the germinal theory of Weisman on evolution. The virtosome also opens wide avenues in the field of medicine.


Circulating DNA DNA complex DNA polymerase RNA polymerase Virtosome 


  1. Adams DH, Gahan PB (1982) Stimulated and non-stimulated ratspleen cells release different DNA-complexes. Differentiation 22:47–52PubMedCrossRefGoogle Scholar
  2. Adams DH, Gahan PB (1983) The DNA extruded by rat spleen cells inculture. Int J Biochem 15:547–552PubMedCrossRefGoogle Scholar
  3. Adams DH, Macintosh AAG (1985) Studies on the cytosolic DNA of chick embryo fibroblasts and its uptake by recipient cultured cells. Int J Biochem 17:1041–1051PubMedCrossRefGoogle Scholar
  4. Anker P, Stroun M (1972) Bacterial ribonucleic acid in the frog brain after a bacterial infection. Science 178:621–623PubMedCrossRefGoogle Scholar
  5. Anker P, Stroun M (2001) Synopsis. Tumor-related alterations in circulating DNA, potential for diagonis, prognosis and detection of minimal residual disease. Leukemia 15:289–291PubMedCrossRefGoogle Scholar
  6. Anker P, Stroun M, Maurice P (1975) Spontaneous release of DNA by human blood lymphocytes as shown in a in vitro system. Cancer Res 35:2375–2382PubMedGoogle Scholar
  7. Anker P, Jachertz D, Stroun M et al (1979) Transfert d’informations génétiques de lymphocytes humains T à B au cours d’une réponse immunitaire au Virus Herpes Simplex. CR Acad Sci Paris 298:217–220Google Scholar
  8. Anker P, Jachertz D, Stroun M et al (1982a) Anticorps porteurs d’allotypes humains synthétisés par des souris nue après injection de DNA relâché par des lymphocytes T humains. J Suisse de Méd 112:1438–1439Google Scholar
  9. Anker P, Jachertz D, Maurice PA et al (1982b) Nude mice injected with DNA excreted by antigen-stimulated human T. Lymphocytes synthesize specific human antibodies. In: Proceedings of the 4th international workshop on immune-defidient animals in experimental research, Lausanne, p 321Google Scholar
  10. Chen XQ, Bonnefoi H, Pelte M-F et al (2000) Telomerase RNA as a detection marker in the serum of breast cancer patients. Clin Cancer Res 6:3823–3826PubMedGoogle Scholar
  11. Dardel F, Leblonde R (2008) Main basse sur le génome. Editions Anne Carrière ParisGoogle Scholar
  12. Gahan PB, Wyndaele R, Mantell SH et al (2003) Evidence that direct DNA uptake through cut shoots leads to genetic transformation of Solanum aviculare Forst. Cell Biochem Funct 21:11–17PubMedCrossRefGoogle Scholar
  13. Garcia-Olmo DC, Dominguez C, Garica-Arranz M, Anker P, Stroun M, Garcia-Verdugo JM, Garcia-Olmo D (2010) Cell-free nucleic acids circulating in the plasma of colorectal cancer patients induce the oncogenic transformation of susceptible cultured cells. Cancer Res 70:560–567PubMedCrossRefGoogle Scholar
  14. Glouchtchenko IE (1948) Vegetative hybridization in plants (in Russian). Akademy Nauk SSSR, Moscow, p 240Google Scholar
  15. Jachertz D, Anker P, Maurice P et al (1979) Information carried by the DNA released by antigen-stimulated lymphocytes. Immunology 37:753–763PubMedGoogle Scholar
  16. Lo D (2000) Fetal DNA in maternal plasma. Circulating nucleic acids in plasma or serum II. Ann NY Acad Sci 955:141–147Google Scholar
  17. Mulcahy H, Lyautey J, Lederrey C et al (1998) A prospective Study of K-ras mutations in the plasma of pancreatic cancer patients. Clin Cancer Res 4:271–275PubMedGoogle Scholar
  18. Staune J (2009) Au-Dela De Darwin – Pour une autre vision de la vie – Éditions Jacqueline Chambon/Actes Sud pp 314Google Scholar
  19. Stroun M (1967) After penetration of Escherichia coli DNA in a tomato plant, rapid appearance of labelled RNA homologous to the bactrial DNA. CR Acad Sci 265:2088–2089Google Scholar
  20. Stroun M (1971) On the Nature of the polymerase responsible for the transcription of released bacterial DNA in plants. Biochem Biophys Res Commun 44:571–578PubMedCrossRefGoogle Scholar
  21. Stroun M, Anker P (1972) Nucleic acids spontaneouly released by living frog auricles. Biochem J 128:100–101Google Scholar
  22. Stroun M, Anker P (1973) Transcription of spontaneously released bacterial desoxyribonucleic acid in frog auricles. J Bacteriol 114:114–120PubMedGoogle Scholar
  23. Stroun M, Anker P (1977a) Spontaneous release of newly synthesized DNA from frog auricles. Arch Sci (Geneva) 30:230–241Google Scholar
  24. Stroun M, Anker P (1977b) Spontaneous extracellular synthesis of DNA released by frog auricles. Arch Sci (Geneva) 30:262–278Google Scholar
  25. Stroun M, Mathon CC, Stroun J (1963a) Modification trasnmitted to the offspring provoked by heterograft in Solanum melongena. Arch Sci (Geneva) 16:2–21Google Scholar
  26. Stroun M, Mathon CC, Stroun J (1963b) Alteration of hereditary traits in Solanum melongena induced by grafts with Solanum nigrum. Proceedings of the 11th International Congress of Genetics (la Haye) 1:218Google Scholar
  27. Stroun M, Anker P, Ledoux L (1966) Fate of bacterial DNA in Solanum Lycopersicum esc. Nature 212:397–398CrossRefGoogle Scholar
  28. Stroun M, Anker P, Ledoux L (1967a) Apparition de DNA de densités différentes chez Solanum Lycorpsicum esc. au cours de la période d’induction d’un tumeur par la bactérie Agrobacterium tumefaciens. CR Acad Sci (Paris) 264:1342–1345Google Scholar
  29. Stroun M, Charles P, Anker P et al (1967b) Metabolic DNA in heart and skeletal muscle and in the intestine of mice. Nature 217:716–717CrossRefGoogle Scholar
  30. Stroun M, Gahan P, Sarid S (1969) Agrobacterium tumefaciensm RNA in non-tumorous tomato cells. Biochem Biophys Res Commun 37:652–657PubMedCrossRefGoogle Scholar
  31. Stroun M, Anker P, Gahan P et al (1971) Agrobacterium tumefacien ribonucleic acid synthesis in tomato cells and crown gall induction. J Bacteriol 106:634–639PubMedGoogle Scholar
  32. Stroun M, Anker P, Maurice P et al (1977) Circulating nucelic acids in higher organisms. Int Rev Cytol 51:1–4PubMedCrossRefGoogle Scholar
  33. Stroun M, Anker P, Beljanski M et al (1978) Presence of RNA in the nucleoprotein complex spontaneously released by human lymphocytes and frog auricles in culture. Cancer Res 38:3546–3554PubMedGoogle Scholar
  34. Stroun M, Anker P, Maurice P et al (1989) Neoplastice characteristics of the DNA Found in the plasma of cancer patients. Oncology 46:318–322PubMedCrossRefGoogle Scholar
  35. Vasioukhin P, Anker P, Maurice P et al (1994) Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br J Haematol 86:774–779PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.OncoXLGenevaSwitzerland

Personalised recommendations