The Plant–Aphid Universe

  • David Iluz
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 16)

Abstract

Aphids belong to the suborder Sternorrhyncha, which contains the aphids, whiteflies, psyllids, and scale insects, groups which are included in the order Hemiptera (Table 1). Sternorrhyncha refers to the rearward position of the mouthparts relative to the head.

Keywords

Aphid Species Scale Insect Acyrthosiphon Pisum Cotton Aphid Cabbage Aphid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agarwala, B.K., Bhattacharya, S. and Bardhanroy, P. (1998) Who eats whose eggs? Intra- versus inter-specific interactions in starving ladybird beetles predaceous on aphids. Ethol. Ecol. Evol. 10: 361–368.Google Scholar
  2. Akimoto, S. (1985) Taxonomic study on gall aphids, Colopha, Paracolopha and Kaltenbachiella (Aphidoidea: Pemphigidae) in East Asia, with special reference to their origins and distributional patterns. Ins. Matsum. N.S. 31: 1–79. View Within Article.Google Scholar
  3. Amar, Z., Gottlieb, H., Varshavsky, L. and Iluz, D. (2005) The scarlet dye of the Holy Land. Bioscience 55: 780–784.Google Scholar
  4. Anderson, C. and McShea, D.W. (2001) Intermediary-level parts in insect societies: adaptive structures that ants build away from the nest. Ins. Soc. 48: 291–301.Google Scholar
  5. Anderson, P.K., Cunningham, A.A., Patel, N.G., Morales, F.J., Epstein, P.R. and Daszak, P. (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19: 535–544.PubMedGoogle Scholar
  6. Azouka, A., Huggett, R. and Harrison, A. (2007) The production of shellac and its general and dental uses: a review. J. Oral Rehabil. 20: 393–400.Google Scholar
  7. Banks, C.J. (1958) Effects of the ant Lasius niger (L.), on the behaviour and reproduction of the black bean aphid, Aph is fabae Scop. Bull. Entomol. Res. 49: 701–714.Google Scholar
  8. Banks, C.J. (1962) Effects of the ant Lasius niger (L.) on insects preying on small populations of Aphis fabae (Scop.) on bean plants. Ann. Appl. Biol. 50: 669–679.Google Scholar
  9. Barayovits, F.L.C. (1978) Cochineal carmine: an ancient dye with a modern role. BCIN. Endeavour 2: 85–92.Google Scholar
  10. Bartlett, B.R. (1961) The influence of ants upon parasites, predators and scale insects. Ann. Entomol. Soc. Am. 54: 543–551.Google Scholar
  11. Baumann, P., Baumann, L., Lai, C.-Y. and Rouhbakhsh D. (1995a) Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu. Rev. Microbiol. 49: 55–94.PubMedGoogle Scholar
  12. Baumann, P., Lai, C.-Y., Baumann, L., Rouhbakhsh, D., Moran, N.A. and Clark M.A. (1995b) Mutualistic associations of aphids and prokaryotes: biology of the genus Buchnera. Appl. Environ. Microbiol. 61: 1–7PubMedGoogle Scholar
  13. Baumann, P., Moran, N.A. and Baumann, L. (1997) The evolution and genetics of aphid endosymbionts. BioScience 47: 12–20.Google Scholar
  14. Baumann, L., Baumann, P. and Thao, M.L. (1999) Detection of messenger RNA transcribed from genes encoding enzymes of amino acid biosynthesis in Buchnera aphidicola (endosymbiont of aphids). Curr. Microbiol. 38: 135–136.PubMedGoogle Scholar
  15. Ben-Dov, Y. (1988) Manna scale, Trabutina mannipara (Hemprich & Ehrenberg) (Homoptera: Coccoidea: Pseudococcidae). Syst. Entomol. 13: 387–392.Google Scholar
  16. Ben-Dov, Y. (2005) A Systematic Catalogue of the Scale Insect Family Margarodidae (Hemiptera: Coccoidea) of the World. Intercept Ltd., Wimborne.Google Scholar
  17. Bodenheimer, F.S. (1947) The Manna of Sinai. Biblic. Archaeol. 10: 2–6.Google Scholar
  18. Bower, W.S., Nault, L.R., Webb, R.E. and Dutky, S.R. (1972) Aphid alarm pheromone: isolation, identification, synthesis. Science 177: 1121–1122.Google Scholar
  19. Brana, D. (1964) Cochineal: Aboriginal dyestuff from Nueva Espa a. Memorias del XXXVI Congreso Internacional deAmericanistas. Department of Geography, The University of Texas, pp. 71–91.Google Scholar
  20. Brust, G.E. (2006) Early Season Aphid and Thrips Populations. University of Maryland College of Agriculture and Natural Resources News Article.Google Scholar
  21. Bryan, K.M. and Wratten, S.D. (1984) The responses of polyphagous predators to prey spatial heterogeneity: aggregation by carabid and staphylinid beetles to their cereal aphid prey. Ecol. Entomol. 9: 251–259.Google Scholar
  22. Carroll, C.R. and Janzen, D.H. (1973) Ecology of foraging by ants. Annu. Rev. Ecol. Syst. 4: 231–257.Google Scholar
  23. Chau, A. and Mackauer, M. (1997) Dropping of pea aphids from feeding site: a consequence of parasitism by the wasp, Monoctonus paulensis. Entomol. Exp. Appl. 83: 247–252.Google Scholar
  24. Cherix, D. (1987) Relation between diet and polyethism in Formica colonies. Behav. Soc. Insects (Basel) 54: 93–115.Google Scholar
  25. Chimenos, J.M., Fernandez, A.I., Villalba, G., Segarra, M., Urruticoechea, A., Artaza, B. and Espiell, F. (2003) Removal of ammonium and phosphates from wastewater resulting from the process of cochineal extraction using MgO-containing by-product. Water Res. 37: 1601–1607.PubMedGoogle Scholar
  26. Cook, L.G. (2008) Extensive chromosomal variation associated with taxon divergence and host specificity in the gall-inducing scale insect Apiomorpha munita (Schrader) (Hemiptera: Sternorrhyncha: Coccoidea: Eriococcidae). Biol. J. Linn. Soc. 72: 265–278.Google Scholar
  27. Danin, A. (1972) A sweet exudate of Hammada: another source of manna in Sinai. Econ. Bot. 26: 373–375.Google Scholar
  28. Dedryver, C.-A., Le Gallic, J.F., Gauthier, J.P. and Simon, J.C. (1998) Life-cycle in the aphid Sitobion avenae F.: polymorphism and comparison of life history traits associated with sexuality. Ecol. Entomol. 23: 123–132.Google Scholar
  29. Dedryver, C.-A., Hulle, M., Le Gallic, J.F., Caillaud, M.C. and Simon, J.C. (2001) Coexistence in space and time of sexual and asexual populations of the cereal aphid Sitobion avenae. Oecologia 128: 379–388.Google Scholar
  30. Dicke, M. and Sabelis, M.W. (1988) Infochemical terminology: based on cost–benefit analyses rather than origin of compounds. Funct. Ecol. 2: 131–139.Google Scholar
  31. Dika, J. and Van Pelt, J.A., (1992) Interaction between phyllosphere yeasts, aphid honeydew and fungicide effectiveness in wheat under field conditions. Plant Pathol. 41: 661–675.Google Scholar
  32. Dill, L.D., Fraser, A. and Roitberg, B.D. (1990) The economics of escape behaviour in the pea aphid, Acyrthosiphon pisum. Oecologia 83: 473–478.Google Scholar
  33. Dixon, A.F.G. (1998) Aphid Ecology, 2nd Edition. Chapman & Hall, London.Google Scholar
  34. Dixon, A.F.G. (2000) Insect Predator–Prey Dynamics. Ladybird Beetles and Biological Control. Cambridge University Press, London.Google Scholar
  35. Dixon, A.F.G. and Agarwala, B.K. (1999) Ladybird-induced life-history changes in aphids. Proc. R. Soc. Lond. B. Biol. Sci. 266: 1549–1553.Google Scholar
  36. Dixon, A.F.G. and Glen D.M. (1971) Morph determination in the bird cherry-oat aphid Rhopalosiphum padi L. Ann. Appl. Biol. 68: 11–21.Google Scholar
  37. Dixon, A.F.G. and Hemptinne, J.-L. (2001) Body size distribution in predatory ladybird beetles reflects that of their prey. Ecology 82: 1847–1856.Google Scholar
  38. Donkin, R.A. (1977) The insect dyes of western and west-central Asia. Anthropos 72: 847–880.Google Scholar
  39. Douglas, A.E. (1998) Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43: 17–37.PubMedGoogle Scholar
  40. Douglas, A.E. (2003) Nutritional physiology of aphids. Adv. Insect Physiol. 31: 73–140.Google Scholar
  41. Duchaud, E., Rusniok Frangeul, C.L., Buchrieser, C., Givaudan, A., Taourit, S., Bocs, S., Boursaux-Eude, C., Chandler, M., Charles, J.F., Dassa, E., Derose, R., Derzelle, S., Freyssinet, G., Gaudriault, S., Medigue, C., Lanois, A.K., Danchin, A., and Kunst, F. (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat. Biotechnol. 21: 1307–1313.PubMedGoogle Scholar
  42. Edwards, J.S. (1966) Defence by smear: supercooling in the cornicle wax of aphids. Letters to Nature, Nature 211: 73–74.Google Scholar
  43. Edwards, L.J., Siddall, J.B., Dunham, L.L., Uden, P. and Kislow, C.J. (1973) Trans-farnesene, alarm pheromone of the green peach aphid, Myzus persicae (Sulzer). Nature 241: 126–127.Google Scholar
  44. Elliott, N.C., Kieckhefer, R.W., Michels, G.J.J. and Giles, K.L. (2002) Predator abundance in alfalfa fields in relation to aphids, within-field vegetation, and landscape matrix. Environ. Entomol. 31: 253–260.Google Scholar
  45. El-Ziady, S. (1960) Further effects of Lasius niger L. on Aphis fabae Scopoli. Proc. R. Entomol. Soc. Lond. A 35: 30–38.Google Scholar
  46. El-Ziady, S. and Kennedy, J.S. (1956) Beneficial effects of the common garden ant Lasius niger L., on the black bean aphid, Aphis fabae Scopoli. Proc. R. Entomol. Soc. Lond. A 31: 61–65.Google Scholar
  47. Eubanks, M.D. and Denno, R.F. (1999) The ecological consequences of variation in plants and prey for an omnivorous insect. Ecology 80: 1253–1266.Google Scholar
  48. Field, L.M. and Blackman, R.L. (2003) Insecticide resistance in the aphid Myzus persicae (Sulzer): chromosome location and epigenetic effects on esterase gene expression in clonal lineages. Biol. J. Linn. Soc. 79: 107–113.Google Scholar
  49. Gherna, R.L., Werren, J.H., Weisburg, W., Cote, R., Woese, C.R., Mandelco, L. and Brenner, D.J. (1991) Arsenophonus nasoniae gen. nov., sp. nov., the causative agent of the son-killer trait in the parasitic wasp Nasonia vitripennis. Int. J. Syst. Bacteriol. 41: 563–565.Google Scholar
  50. Hajek, A.E. and Stleger, R.J. (1994) Interactions between fungal pathogens and insect hosts. Annu. Rev. Entomol. 39: 293–322.Google Scholar
  51. Hales, D.F., Tomiuk, J., Wohrmann, K. and Sunnucks, P. (1997) Evolutionary and genetic aspects of aphid biology: A review. Eur. J. Entomol. 94: 1–55.Google Scholar
  52. Haynes, S., Darby, A.C., Daniell, T.J., Webster, G., Van Veen, F.J., Godfray, H.C.J., Prosser, J.I. and Douglas, A.E. (2003) Diversity of bacteria associated with natural aphid populations. Appl. Environ. Microbiol. 69: 7216–7223.PubMedGoogle Scholar
  53. Heie, O.E. (1994) Why are there so few aphid species in the temperate areas of the southern hemisphere? Eur. J. Entomol. 91: 127–133.Google Scholar
  54. Hölldobler, B. and Wilson, E.O. (1990) The Ants. Springer, Berlin/Heidelberg/New York.Google Scholar
  55. Hölldobler, B. and Wilson, E.O. (1994) Journey to the ants: a story of scientific exploration. Harvard University Press, Cambridge, MAGoogle Scholar
  56. Hughes, R.D. (1963) Population dynamics of the cabbage aphid, Brevicoryne brassicae (L.). J. Anim. Ecol. 32: 393–424.Google Scholar
  57. Hypsa, V. and Dale, C. (1997) In vitro culture and phylogenetic analysis of “Candidatus Arsenophonus triatominarum,” an intracellular bacterium from the triatomine bug, Triatoma infestans. Int. J. Syst. Bacteriol. 47: 1140–1144.PubMedGoogle Scholar
  58. Inbar, M., Eshel, A. and Wool, D. (1995) Interspecific competition among phloem-feeding insects mediated by induced hostplant sinks. Ecology 76: 1506–1515.Google Scholar
  59. Jahn, G.C., Almazan, L.P. and Pacia, J. (2005) Effect of nitrogen fertilizer on the intrinsic rate of increase of the rusty plum aphid, Hysteroneura setariae (Thomas) (Homoptera: Aphididae) on rice (Oryza sativa L.). Environ. Entomol. 34: 938–943.Google Scholar
  60. Jansson, R.K. and Smilowitz, Z. (1986) Influence of nitrogen on population parameters of potato insects: abundance, population growth, and within-plant distribution of the green peach aphid, Myzus persicae (Homoptera: Aphididae). Environ. Entomol. 15: 49–55.Google Scholar
  61. Jiggins, C., Majerus, M. and Gough, U. (1993) Ant defence of colonies of Aphis fabae Scopoli (Hemiptera: Aphididae), against predation by ladybirds. Br. J. Entomol. Nat. Hist. 6: 129–138.Google Scholar
  62. Johnson, B. (1965) Wing polymorphism in aphids II. Interaction between aphids. Entomol. Exp. Appl. 8: 49–64.Google Scholar
  63. Johnson, C., Agosti, D., Delabie, J.H., Dumpert, K., Williams, D.J., von Tschirnhaus, M. and Maschwitz, U. (2001) Acropyga and Azteca Ants (Hymenoptera: Formicidae) with Scale Insects (Sternorrhyncha: Coccoidea): 20 Million Years of Intimate Symbiosis. American Museum Novitates.Google Scholar
  64. Jones, M.G. (1979) Abundance of aphids on cereals from before 1973 to 1977. J. Appl. Ecol. 16: 1–22.Google Scholar
  65. Katayama, N. and Suzuki, N. (2002) The cost and benefit of ant attendance for the aphid Aphis craccivora (Homoptera: Aphididae) with reference to the aphid colony size. Can. Entomol. 134: 241–250.Google Scholar
  66. Katayama, N. and Suzuki, N. (2003) Bodyguard effects for the aphids of Aphis cracciova Koch (Homoptera: Aphididae) as to the activity of two ant species, Tetramorium caespitum Linnaeus (Hymenoptera: Formicidae) and Lasius niger L. (Hymenoptera: Formicidae). Appl. Entomol. Zool. 38: 427–433.Google Scholar
  67. Koyama, Y., Yao, I. and Akimoto, S.-I. (2004) Aphid galls accumulate high concentrations of amino acids: a support for the nutrition hypothesis for gall formation. Entomol. Exp. Appl. 113: 35–44.Google Scholar
  68. Krupke, C., Obermeyer, J. and Oeil, R., (2007) Soybean aphid, a new beginning for 2007, Pest Crop May 11(7).Google Scholar
  69. Kunert, G. and Weisser, W.W. (2003) The interplay between density- and trait-mediated effects in predator–prey interactions: a case study in aphid wing polymorphism. Oecologia 135: 304–312.PubMedGoogle Scholar
  70. Lacey, L.A. and Shapiro-Ilan, D.I. (2008) Microbial control of insect pests in temperate orchard systems: potential for incorporation into IPM. Annu. Rev. Entomol. 53: 121–144.PubMedGoogle Scholar
  71. Lamb, K.P. (1961) Some effects of fluctuating temperatures on metabolism, development, and rate of population growth in the cabbage aphid, Brevicoryne Brassicae. Ecology 42: 740–745.Google Scholar
  72. Larson, K.C. and Whitham, T.G. (1991) Manipulation of food resources by a gall-forming aphid: the physiology of sink–source interactions. Oecologia 88: 15–21.Google Scholar
  73. Lees, A.D. (1967) The production of the apterous and alate forms in the aphid Megoura viciae Buckton, with special reference to the role of crowding. J. Insect Physiol. 13: 289–318.Google Scholar
  74. Lefevre, C., Charles, H., Vallier, A., Delobel, B., Farrell, B. and Heddi, A. (2004) Endosymbiont phylogenesis in the Dryophthoridae weevils: evidence for bacterial replacement. Mol. Biol. Evol. 21: 965–973.PubMedGoogle Scholar
  75. Levitin, E. and Cohen, E. (1998) The involvement of acetylcholinesterase in resistance of the California red scale shape Aonidiella aurantii to organophosphorus pesticides. Entomol. Exp. Appl. 88: 115–121.Google Scholar
  76. Losey, J.E. and Denno, R.F. (1998) The escape response of pea aphids to foliar-foraging predators: factors affecting dropping behaviour. Ecol. Entomol. 23: 53–61.Google Scholar
  77. Loughridge, A.H. and Luff, M.L. (1983) Aphid predation by Harpalus rufipes (Degeer) (Coleoptera: Carabidae) in the laboratory and field. J. Appl. Ecol. 20: 451–462.Google Scholar
  78. Maddison, D.R. and Maddison, W.P. (2000) MacClade 4: Analysis of Phylogeny and Character Evolution. Sinauer Associates, Sunderland, MA.Google Scholar
  79. Matsuura, K. and Yashiro, T. (2006) Aphid egg protection by ants: a novel aspect of the mutualism between the tree-feeding aphid Stomaphis hirukawai and its attendant ant Lasius productus. Naturwissenschaften 93: 506–510. doi:10.1007/s00114-006-0136-8.PubMedGoogle Scholar
  80. McGavin, G.C. (1993) Bugs of the World. Blandford Press, New York.Google Scholar
  81. Mendez, J., Gonzalez, M., Lobo, M.G. and Carenero, A. (2004) Color quality of pigments in cochineals (Dactylopius coccus Costa). Geographical origin characterization using multi variate statistical analysis. J. Agric. Food Chem. 52: 1331–1337.Google Scholar
  82. Miller, D.R. and Kosztarab, M. (1979) Recent advances in the study of scale insects. Annu. Rev. Entomol. 24: 1–27.Google Scholar
  83. Miller, D.R., Miller, G.L. and Watson, G.W. (2002) Invasive species of mealybugs (Hemiptera: Pseudococcidae) and their threat to US agriculture. Proc. Entomol. Soc. Wash. 104: 825–836.Google Scholar
  84. Miller, G.L., Oswald, J.D. and Miller, D.R. (2004) Lacewings and scale insects: a review of predator/prey associations between the Neuropterida and Coccoidea (Insecta: Neuroptera, Raphidioptera, Hemiptera). Ann. Entomol. Soc. Am. 97: 1103–1125.Google Scholar
  85. Miller, G.L., Kane, E.C. and Carlson, R.W. (2006) Ressurecting Asa Fitch’s Aphid Notes: Historical Entomology for Application Today. Systematic Entomology Laboratory World Wide Web Site.Google Scholar
  86. Mira, A. and Moran, N. (2002) Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria. Microb. Ecol. 44: 137–143.PubMedGoogle Scholar
  87. Mittler, T.E. and Kurkel, H. (1971) Wing production by grouped and isolated apterae of the aphid Myzus persicae on artificial diet. Entomol. Exp. Appl. 14: 83–92.Google Scholar
  88. Mittler, T.E. and Sutherland, O.R.W. (1969) Dietary influences on aphid polymorphism. Entomol. Exp. Appl. 12: 703–713.Google Scholar
  89. Montgomery, M.E. and Nault, L.R. (1977) Comparative response of aphids to the alarm pheromone, (E)-b-farnesene. Entomol. Exp. Appl. 22: 236–242.Google Scholar
  90. Montllor, C.B., Maxmen, A. and Purcell, A.H. (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27: 189–195.Google Scholar
  91. Moran, N.A. (1992) The evolution of aphid life cycles. Annu. Rev. Ecol. Syst. 37: 321–348.Google Scholar
  92. Moran, N.A. and Degnan, P.H. (2005) Functional genomics of Buchnera and the ecology of aphid hosts. Mol. Ecol. 15: 1251–1261.Google Scholar
  93. Mutti, N.S., Park, Y., Reese, J.C. and Reeck, G.R. (2006) RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J. Insect Sci. 6: 38.Google Scholar
  94. Nault, L.R., Edwards, L.J. and Styer, W.E. (1973) Aphid alarm pheromones: secretion and reception. Environ. Entomol. 2: 101–103.Google Scholar
  95. Nevo, E. and Coll, M. (2001) Effect of nitrogen fertilization on Aphis gossypii (Homoptera: Aphididae): variation in size, color, and reproduction. J. Econ. Entomol. 94: 27–32.PubMedGoogle Scholar
  96. Nichols, C. (2007) The Most Extreme Bugs. Wiley, San Francisco.Google Scholar
  97. Nixon, G.E.J. (1951) The Association of Ants with Aphids and Coccids. Commonwealth Institute of Entomology, London.Google Scholar
  98. Offenberg, J. (2001) Balancing between mutualism and exploitation: the symbiotic interaction between Lasius ants and aphids. Behav. Ecol. Sociobiol. 49: 304–310.Google Scholar
  99. Oliver, K.M., Russell, J.A., Moran, N.A. and Hunter, M.S. (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. PNAS 100: 1803–1807.PubMedGoogle Scholar
  100. Pasteels, J.M. (1976) Evolutionary aspects in chemical ecology and chemical communication. In: D. White (ed.) Proceedings of the 15th International Congress Entomology. Entomological Society of America, Washington, pp. 281–293.Google Scholar
  101. Pasteels, J.M. (2006) Review: Chemical Defense, Offence and Alliance in Ants–Aphids–Ladybirds Relationships. The Society of Population Ecology and Springer.Google Scholar
  102. Pickett, J.A., Wadhams, L.J. and Woodcock, C.M. (1997) Developing sustainable pest control from chemical ecology. Agric. Ecosyst. Environ. 64: 149–156.Google Scholar
  103. Pontoppidan, B., Ekbom, B., Eriksson, S. and Meijer, J. (2001) Purification and characterization of myrosinase from the cabbage aphid (Brevicoryne brassicae), a brassica herbivore. Eur. J. Biochem. 268: 1041–1048.PubMedGoogle Scholar
  104. Powell, W. and Parry, W.H. (1976) Effects of temperature on overwintering populations of the green spruce aphid Elatobium abietinum. Ann. Appl. Biol. 82: 209–219.Google Scholar
  105. Raman Anantanarayanan (2009) Insect–plant interactions: the gall dimension. In: J. Seckbach and Z. Dubinsky (eds.) All flesh Is Grass: Plant–Animal Interactions. Springer, Dordrecht, in press.Google Scholar
  106. Reynolds, H.T. and Volk, T., (2007) Scorias spongiosa, the beech aphid poop-eater, Tom Volk’s Fungus of the Month, University of Wisconsin-La Crosse.Google Scholar
  107. Richards, W.R. (1966) Systematics of fossil aphids from Canadian amber (Homoptera:Aphidi- dae). Can. Entomol. 98: 746–760.Google Scholar
  108. Rispe, C., Pierre, J.S., Simon, J.C. and Gouyon, P.H. (1998) Models of sexual and asexual coexistence in aphids based on constraints. J. Evol. Biol. 11: 685–701.Google Scholar
  109. Roitberg, B.D. and Myers, J.H. (1978) Adaptation of alarm pheromone responses of the pea aphid Acyrthosiphon pisum (Harris). Can. J. Zool. 56: 103–108.Google Scholar
  110. Roitberg, B.D. and Myers, J.H. (1979) Behavioural and physiological adaptatons of pea aphids (Homoptera: Aphididae) to high ground temperatures and predator disturbance. Can. Entomol. 111: 515–519.Google Scholar
  111. Rutledge, C.E., O’Neil, R.J., Fox, T.B. and Landis, D.A. (2004) Soybean aphid predators and their use in integrated pest management. Ann. Entomol. Soc. Am. 97: 240–248.Google Scholar
  112. Sandberg, G. (1997) The Red Dyes: Cochineal, Madder and Murex Purple: A World Tour of Textile Techniques. Lark Books, Asheville.Google Scholar
  113. Sato, S., Jimbo, R., Yasuda, H. and Dixon, F.G. (2008) Cost of being an intraguild predator in predatory ladybirds. Appl. Entomol. Zool. 43: 143–147.Google Scholar
  114. Schmitschek, E. (1980) Manna. J. Pest Sci. 53: 113–121.Google Scholar
  115. Seibert, T.F. (1992) Mutualistic interactions of the aphid Lachnus allegheniensis (Homoptera: Aphididae) and its tending ant Formica obscuripes (Hymenoptera: Formicidae) Ann. Entomol. Soc. Am. 85: 173–178.Google Scholar
  116. Shah, P.A. and Pell, J.K. (2003) Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 61: 413–423.PubMedGoogle Scholar
  117. Shaw, M.J.P. (1970) Effects of population density on alienicolae of Aphis favae Scop. I. The effect of crowding on the expression of migratory urge among alatae in the laboratory. Ann. Appl. Biol. 65: 197–203.Google Scholar
  118. Shcherbakov, D.E. and Wegierelc, P. (1991) Creaphididae, a new and the oldest aphid family from the Triassic of Middle Asia. Psyche 98: 81–86.Google Scholar
  119. Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y. and Ishikawa, H. (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407: 81–86.Google Scholar
  120. Simon, J.-C., Rispe, C. and Sunnucks, P. (2002) Ecology and evolution of sex in aphids. Trends Ecol. Evol. 17: 34–39.Google Scholar
  121. Skinner, G.J. and Whittaker, J.B. (1981) An experimental investigation of interrelationships between the wood ant (Formica rufa) and some tree-canopy herbivores. J. Anim. Ecol. 50: 313–326.Google Scholar
  122. Sloggett, J.J. and Weisser, W.W. (2002) Parasitoids induce production of the dispersal morph of the pea aphid, Acyrthosiphon pisum. Oikos 98: 323–333.Google Scholar
  123. Stadler, B. and Dixon, A.F.O. (1999) Ant attendance in aphids: why different degrees of myrmecophily? Ecol. Entomol. 24: 363–369.Google Scholar
  124. Stadler, B. and Dixon, A.F.G. (2005) Ecology and evolution of aphid–ant interactions. Annu. Rev. Ecol. Syst. 36: 345–372.Google Scholar
  125. Stadler, B., Kindlmann, P., Šmilauer, P. and Fiedler, K. (2003) A comparative analysis of morphological and ecological characters of European aphids and lycaenids in relation to ant attendance. Oecologia 135: 422–430.PubMedGoogle Scholar
  126. Stary, P. and Lukásova, H. (2002) Increase of Russian wheat aphid, Diuraphis noxia (Kurdj.) in hot and dry weather (2000) (Hom., Aphididae). J. Pest. Sci. 75: 6–10.Google Scholar
  127. Stroyan, H.G. (1997) Aphid, Eight Edition. McGraw-Hill Encyclopedia of Science and Technology, New York.Google Scholar
  128. Subandiyah, S., Nikoh, N., Tsuyumu, S., Somowiyarjo, S. and Fukatsu, T. (2000) Complex endosymbiotic microbiota of the citrus psyllid Diaphorina citri (Homoptera: Psylloidea). Zool. Sci. 17: 983–989.Google Scholar
  129. Sutherland, O.R.W. (1969a) The role of crowding in the production of winged forms by two strains of the pea aphid, Acyrthosiphon pisum. J. Insect Physiol. 15: 1385–1410.Google Scholar
  130. Sutherland, O.R.W. (1969b) The role of the host plant in the production of winged forms by two strains of the pea aphid, Acyrthosiphon pisum. J. Insect Physiol. 15: 2179–2201.Google Scholar
  131. Sutherland, O.R.W. and Mittler, T.E. (1971) Influence of diet composition and crowding on wing production by the aphid Myzus persicae. J. Insect Physiol. 17: 321–328.Google Scholar
  132. Suwanbutr, S. (1996) Stable age distributions of lucerne aphid populations in SE-Tasmania, Thammasat. Int. J. Sci. Technol. 1: 38–43.Google Scholar
  133. Swofford, D.L. (1998) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 40b10, Sinauer Associates, Sunderland, MA.Google Scholar
  134. Tokunaga, E. and Suzuki, N. (2008) Colony growth and dispersal in the ant-tended aphid, Aphis craccivora Koch, and the non-ant-tended aphid, Acyrthosiphon pisum Harris, under the absence of predators and ants. Popul. Ecol. 50: 45–52.Google Scholar
  135. van Emden, H.F. and Bashford, M.A. (1969) A comparison of the reproduction of Brevicoryne brassicae and Myzus persicae in relation to soluble nitrogen concentration and leaf age (leaf position) in the brussels sprout plant. Entomol. Exp. Appl. 12: 351–364.Google Scholar
  136. Vepsäläinen, K. and Savolainen, R. (1994) Ant-aphid interaction and territorial dynamics of wood ants. Memor. Zool. 48: 251–259.Google Scholar
  137. Way, M.J. (1954) Studies on the association of the ant Oecophylla longinoda (Latr.) with the scale insect, Saissetia zanzibarensis (Williams). Bull. Entomol. Res. 45: 113–134.Google Scholar
  138. Way, M.J. (1963) Mutualism between ants and honeydew producing Homoptera. Annu. Rev. Entomol. 8: 307–344.Google Scholar
  139. Weisser, W.W., Braendle, C. and Minoretti, N. (1999) Predator-induced morphological shift in the pea aphid. Proc. R. Soc. Lond. B 266: 1175–1181.Google Scholar
  140. Wernegreen, J.J. and Moran, N.A. (2001) Vertical transmission of biosynthetic plasmids in aphid endosymbionts (Buchnera). J. Bacteriol. 183: 785–790.PubMedGoogle Scholar
  141. Wilkinson, T.L. and Douglas, A.E. (1996) The impact of aposymbiosis on amino acid metabolism of pea aphids. Entomol. Exp. Appl. 80: 279–282.Google Scholar
  142. Wilkinson, T.L. and Douglas, A.E. (2003) Phloem amino acids and the host plant range of the polyphagous aphid, Aphis fabae. Entomol. Exp. Appl. 106: 103–113.Google Scholar
  143. Williams, R. (1999) Lacewings nature little helpers. J. Pestic. Reform Fall 3: 22–23.Google Scholar
  144. Winder, L. (1990) Predation of the cereal aphid Sitobion avenae by polyphagous predators on the ground. Ecol. Entomol. 15: 105–110.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • David Iluz
    • 1
  1. 1.The Mina & Everard Goodman Faculty of Life Sciences, Department of Israel Studies and Archaeology and Department of Geography and EnvironmentBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations