Tiny Ticks are Vast Sources of Antihaemostatic Factors

  • Mária KazimírováEmail author
  • Cho Yeow Koh
  • R. Manjunatha Kini


Ticks are obligate blood-feeding ectoparasites. Damage of the skin of vertebrates leads to hemostatic, inflammatory and immune responses. These would disrupt tick feeding with detrimental consequences. To avoid host reactions, ticks inject saliva, a cocktail of pharmacologically active compounds, such as vasodilators, antiplatelet factors, anticoagulants, anti-inflammatory and immunomodulatory substances. Ticks have evolved powerful tools to prevent or prolong coagulation of the host blood. Majority of the inhibitors identified so far are proteins that display a variety of molecular masses, targets and inhibitory mechanisms. These anticoagulants can be classified as thrombin inhibitors, factor Xa inhibitors, extrinsic and intrinsic tenase complex inhibitors and contact system proteins inhibitors. Based on the diversity of antihemostatic strategies, it has been assumed that the main tick families have adapted to blood feeding independently. The key enzyme of the coagulation cascade – thrombin is often targeted by tick anticoagulants. The most well characterized thrombin inhibitors are the Kunitz-type proteinase inhibitors, i.e., ornithodorin, savignin and monobin from soft ticks, or boophilin, amblin, hemalin from hard ticks. A class of novel thrombin inhibitors is represented by variegin, isolated from the hard tick Amblyomma variegatum. This class of inhibitors display structural and functional similarity to hirulog, a peptide designed based on hirudin isolated from leech. TAP, a Kunitz-type FXa inhibitor from the soft tick Ornithodoros moubata has been among the best studied tick anticoagulants. Novel tick-derived molecules represent potentially useful therapeutic agents for treatment of hemostatic disorders, cardiovascular diseases and disorders of the immune system.


Salivary Gland Tick Species Anticoagulant Activity Hard Tick Salivary Gland Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Slovak Research and Development Agency (contract no. APVV-51-004505) to MK, and Academic Research Grants from National University of Singapore to RMK.


  1. Aljamali, M.N., Ramakrishnan, V.G., Weng, H., Tucker, J.S., Sauer, J.R., Essenberg, R.C., 2009. Microarray analysis of gene expression changes in feeding female and male lone star ticks, Amblyomma americanum (L). Arch. Insect Biochem. Physiol. 71, 236–253.PubMedCrossRefGoogle Scholar
  2. Anastopoulos, P., Thurn, M.J., Broady, K.W., 1991. Anticoagulant in the tick Ixodes holocyclus. Aust. Vet. J. 68, 366–367.PubMedCrossRefGoogle Scholar
  3. Andrade, B.B., Teixeira, C.R., Barral, A., Barral-Netto, M., 2005. Haematophagous arthropod saliva and host defense system: a tale of tear and blood. An. Acad. Bras. Cienc. 77, 665–693.PubMedCrossRefGoogle Scholar
  4. Azzolini, S.S., Sasaki, S.D., Torquato, R.J., Andreotti, R., Andreotti, E., Tanaka, A.S., 2003. Rhipicephalus sanguineus trypsin inhibitors present in the tick larvae: isolation, characterization, and partial primary structure determination. Arch. Biochem. Biophys. 417, 176–182.CrossRefGoogle Scholar
  5. Barker, S.C., Murrell, A., 2004. Systematics and evolution of ticks with a list of valid genus and species names. Parasitology 129(Suppl), S15–S36.PubMedCrossRefGoogle Scholar
  6. Batista, I.F., Chudzinski-Tavassi, A.M., Faria, F., Simons, S.M., Barros-Batestti, D.M., Labruna, M.B., Leao, L.I., Ho, P.L., Junqueira-de-Azevedo, I.L., 2008. Expressed sequence tags (ESTs) from the salivary glands of the tick Amblyomma cajennense (Acari: Ixodidae). Toxicon 51, 823–834.PubMedCrossRefGoogle Scholar
  7. Binnington, K.C., Kemp, D.H., 1980. Role of tick salivary glands in feeding and disease transmission. Adv. Parasitol. 18, 315–339.PubMedCrossRefGoogle Scholar
  8. Bowman, A.S., Coons, L.B., Needham, G.R., Sauer, J.R., 1997. Tick saliva: recent advances and implications for vector competence. Med. Vet. Entomol. 11, 277–285.PubMedCrossRefGoogle Scholar
  9. Bowman, A.S., Dillwith, J.W., Sauer, J.R., 1996. Tick salivary prostaglandins: presence, origin and significance. Parasitol. Today 12, 388–396.PubMedCrossRefGoogle Scholar
  10. Bowman, A.S., Sauer, J.R., 2004. Tick salivary glands: function, physiology and future. Parasitology 129(Suppl), S67–S81.PubMedGoogle Scholar
  11. Brossard, M., Wikel, S.K., 2004. Tick immunobiology. Parasitology 129(Suppl), S161–S176.PubMedCrossRefGoogle Scholar
  12. Cheng, Y., Wu, H., Li, D., 1999. An inhibitor selective for collagen-stimulated platelet aggregation from the salivary glands of hard tick Haemaphysalis longicornis and its mechanism of action. Sci. China C. Life Sci. 42, 457–464.PubMedCrossRefGoogle Scholar
  13. Chmelar, J., Anderson, J.M., Mu, J., Jochim, R.C., Valenzuela, J.G., Kopecky, J., 2008. Insight into the sialome of the castor bean tick, Ixodes ricinus. BMC Genomics 9, 233PubMedCrossRefGoogle Scholar
  14. Ciprandi, A., de Oliveira, S.K., Masuda, A., Horn, F., Termignoni, C., 2006. Boophilus microplus: its saliva contains microphilin, a small thrombin inhibitor. Exp. Parasitol. 114, 40–46.PubMedCrossRefGoogle Scholar
  15. Das, S., Banerjee, G., DePonte, K., Marcantonio, N., Kantor, F.S., Fikrig, E., 2001. Salp25D, an Ixodes scapularis antioxidant, is 1 of 14 immunodominant antigens in engorged tick salivary glands. J. Infect. Dis. 184, 1056–1064.PubMedCrossRefGoogle Scholar
  16. Davie, E.W., Fujikawa, K., Kisiel, W., 1991. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 30, 10363–10370.PubMedCrossRefGoogle Scholar
  17. Francischetti, I.M., Mather, T.N., Ribeiro, J.M., 2003. Cloning of a salivary gland metalloprotease and characterization of gelatinase and fibrin(ogen)lytic activities in the saliva of the Lyme disease tick vector Ixodes scapularis. Biochem. Biophys. Res. Commun. 305, 869–875.PubMedCrossRefGoogle Scholar
  18. Francischetti, I.M., Mather, T.N., Ribeiro, J.M., 2004. Penthalaris, a novel recombinant five-Kunitz tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick vector of Lyme disease, Ixodes scapularis. Thromb. Haemost. 91, 886–898.PubMedGoogle Scholar
  19. Francischetti, I.M., My, P.V., Mans, B.J., Andersen, J.F., Mather, T.N., Lane, R.S., Ribeiro, J.M., 2005. The transcriptome of the salivary glands of the female western black-legged tick Ixodes pacificus (Acari: Ixodidae). Insect Biochem. Mol. Biol. 35, 1142–1161.PubMedCrossRefGoogle Scholar
  20. Francischetti, I.M., Sa-Nunes, A., Mans, B.J., Santos, I.M., Ribeiro, J.M., 2009. The role of saliva in tick feeding. Front Biosci. 14, 2051–2088.PubMedCrossRefGoogle Scholar
  21. Francischetti, I.M., Valenzuela, J.G., Andersen, J.F., Mather, T.N., Ribeiro, J.M., 2002. Ixolaris, a novel recombinant tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick, Ixodes scapularis: identification of factor X and factor Xa as scaffolds for the inhibition of factor VIIa/tissue factor complex. Blood 99, 3602–3612.PubMedCrossRefGoogle Scholar
  22. Gaspar, A.R., Joubert, A.M., Crause, J.C., Neitz, A.W., 1996. Isolation and characterization of an anticoagulant from the salivary glands of the tick, Ornithodoros savignyi (Acari: Argasidae). Exp. Appl. Acarol. 20, 583–598.PubMedCrossRefGoogle Scholar
  23. Gordon, J.R., Allen, J.R., 1991. Factors V and VII anticoagulant activities in the salivary glands of feeding Dermacentor andersoni ticks. J. Parasitol. 77, 167–170.PubMedCrossRefGoogle Scholar
  24. Hawkins, R.I., Hellmann, K., 1966. Factors affecting blood clotting from the tick Ornithodorus moubata. J. Physiol 185, 70PPubMedGoogle Scholar
  25. Hellmann, K., Hawkins, R.I., 1967. The action of tick extracts on blood coagulation and fibrinolysis. Thromb. Diath. Haemorrh. 18, 617–625.PubMedGoogle Scholar
  26. Hoffmann, A., Walsmann, P., Riesener, G., Paintz, M., Markwardt, F., 1991. Isolation and characterization of a thrombin inhibitor from the tick Ixodes ricinus. Pharmazie 46, 209–212.PubMedGoogle Scholar
  27. Horn, F., dos Santos, P.C., Termignoni, C., 2000. Boophilus microplus anticoagulant protein: an antithrombin inhibitor isolated from the cattle tick saliva. Arch. Biochem. Biophys. 384, 68–73.PubMedCrossRefGoogle Scholar
  28. Hovius, J.W., Levi, M., Fikrig, E., 2008. Salivating for knowledge: potential pharmacological agents in tick saliva. PLoS Med. 5, e43.PubMedCrossRefGoogle Scholar
  29. Ibrahim, M.A., 1998. Purification and properties of protease inhibitor and anticoagulant from the larvae of the camel tick Hyalomma dromedarii (Acari: Ixodidae). J. Egypt. Ger. Soc. Zool. A. Comp. Physiol. Biochem. 25, 319–339.Google Scholar
  30. Ibrahim, M.A., Ghazy, A.H., Khalil, M.I., 2000. The embryos of the camel tick Hyalomma dromedarii contain a potent inhibitor of both thrombin and FXa. J. Egypt. Ger. Soc. Zool. A. Comp. Physiol. Biochem. 32, 99–114.Google Scholar
  31. Ibrahim, M.A., Ghazy, A.H., Maharem, T., Khalil, M., 2001a. Isolation and properties of two forms of thrombin inhibitor from the nymphs of the camel tick Hyalomma dromedarii (Acari: Ixodidae). Exp. Appl. Acarol. 25, 675–698.PubMedCrossRefGoogle Scholar
  32. Ibrahim, M.A., Ghazy, A.H., Maharem, T.M., Khalil, M.I., 1998. Purification and characterization of peptide anticoagulants from the embryos of the camel tick, Hyalomma dromedarii (Acari: Ixodidae). J. Egypt. Ger. Soc. Zool. A. Comp. Physiol. Biochem. 27, 287–305.Google Scholar
  33. Ibrahim, M.A., Ghazy, A.H., Maharem, T.M., Khalil, M.I., 2001b. Factor Xa (FXa) inhibitor from the nymphs of the camel tick Hyalomma dromedarii. Comp Biochem. Physiol. B. Biochem. Mol. Biol. 130, 501–512.PubMedCrossRefGoogle Scholar
  34. Inokuma, H., Kemp, D.H., Willadsen, P., 1994. Comparison of prostaglandin E2 (PGE2) in salivary gland of Boophilus microplus, Haemaphysalis longicornis and Ixodes holocyclus, and quantification of PGE2 in saliva, hemolymph, ovary and gut of B. microplus. J. Vet. Med. Sci. 56, 1217–1218.PubMedCrossRefGoogle Scholar
  35. Iwanaga, S., Okada, M., Isawa, H., Morita, A., Yuda, M., Chinzei, Y., 2003. Identification and characterization of novel salivary thrombin inhibitors from the ixodidae tick, Haemaphysalis longicornis. Eur. J. Biochem. 270, 1926–1934.PubMedCrossRefGoogle Scholar
  36. Joubert, A.M., Crause, J.C., Gaspar, A.R., Clarke, F.C., Spickett, A.M., Neitz, A.W., 1995. Isolation and characterization of an anticoagulant present in the salivary glands of the bont-legged tick, Hyalomma truncatum. Exp. Appl. Acarol. 19, 79–92.PubMedCrossRefGoogle Scholar
  37. Karczewski, J., Endris, R., Connolly, T.M., 1994. Disagregin is a fibrinogen receptor antagonist lacking the Arg-Gly-Asp sequence from the tick, Ornithodoros moubata. J. Biol. Chem. 269, 6702–6708.PubMedGoogle Scholar
  38. Karczewski, J., Waxman, L., Endris, R.G., Connolly, T.M., 1995. An inhibitor from the argasid tick Ornithodoros moubata of cell adhesion to collagen. Biochem. Biophys. Res. Commun. 208, 532–541.PubMedCrossRefGoogle Scholar
  39. Kato, N., Iwanaga, S., Okayama, T., Isawa, H., Yuda, M., Chinzei, Y., 2005. Identification and characterization of the plasma kallikrein-kinin system inhibitor, haemaphysalin, from hard tick, Haemaphysalis longicornis. Thromb. Haemost. 93, 359–367.PubMedGoogle Scholar
  40. Kazimirova, M., Jancinova, V., Petrikova, M., Takac, P., Labuda, M., Nosal, R., 2002. An inhibitor of thrombin-stimulated blood platelet aggregation from the salivary glands of the hard tick Amblyomma variegatum (Acari: Ixodidae). Exp. Appl. Acarol. 28, 97–105.PubMedCrossRefGoogle Scholar
  41. Kazimirova, M., Silvanova, E., Slovak, M., Balanova, I., Labuda, M., 2000. Anticoagulant activity in salivary glands of ixodid ticks. Proc. 3rd Int. Conf. Tick Tick-Borne Pathogens, 159–164.Google Scholar
  42. Keller, P.M., Waxman, L., Arnold, B.A., Schultz, L.D., Condra, C., Connolly, T.M., 1993. Cloning of the cDNA and expression of moubatin, an inhibitor of platelet aggregation. J. Biol. Chem. 268, 5450–5456.PubMedGoogle Scholar
  43. Koh, C.Y., Kazimirova, M., Nuttall, P.A., Kini, R.M., 2009. Noncompetitive inhibitor of thrombin. ChemBiochem 10, 2155–2158.PubMedCrossRefGoogle Scholar
  44. Koh, C.Y., Kazimirova, M., Trimnell, A., Takac, P., Labuda, M., Nuttall, P.A., Kini, R.M., 2007. Variegin, a novel fast and tight binding thrombin inhibitor from the tropical bont tick. J. Biol. Chem. 282, 29101–29113.PubMedCrossRefGoogle Scholar
  45. Koh, C.Y., Kini, R.M., 2009. Molecular diversity of anticoagulants from haematophagous animals. Thromb. Haemost. 102, 437–453.PubMedGoogle Scholar
  46. Lai, R., Takeuchi, H., Jonczy, J., Rees, H.H., Turner, P.C., 2004. A thrombin inhibitor from the ixodid tick, Amblyomma hebraeum. Gene 342, 243–249.PubMedCrossRefGoogle Scholar
  47. Ledizet, M., Harrison, L.M., Koskia, R.A., Cappello, M., 2005. Discovery and pre-clinical development of antithrombotics from hematophagous invertebrates. Curr. Med. Chem. Cardiovasc. Hematol. Agents 3, 1–10.PubMedCrossRefGoogle Scholar
  48. Liao, M., Zhou, J., Gong, H., Boldbaatar, D., Shirafuji, R., Battur, B., Nishikawa, Y., Fujisaki, K., 2009. Hemalin, a thrombin inhibitor isolated from a midgut cDNA library from the hard tick Haemaphysalis longicornis. J. Insect Physiol 55, 164–173.PubMedCrossRefGoogle Scholar
  49. Limo, M.K., Voigt, W.P., Tumbo-Oeri, A.G., Njogu, R.M., ole-MoiYoi, O.K., 1991. Purification and characterization of an anticoagulant from the salivary glands of the ixodid tick Rhipicephalus appendiculatus. Exp. Parasitol. 72, 418–429.PubMedCrossRefGoogle Scholar
  50. Macedo-Ribeiro, S., Almeida, C., Calisto, B.M., Friedrich, T., Mentele, R., Sturzebecher, J., Fuentes-Prior, P., Pereira, P.J., 2008. Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick. PLoS One 3, e1624.PubMedCrossRefGoogle Scholar
  51. Mans, B.J., Andersen, J.F., Schwan, T.G., Ribeiro, J.M., 2008. Characterization of anti-hemostatic factors in the argasid, Argas monolakensis: implications for the evolution of blood-feeding in the soft tick family. Insect Biochem. Mol. Biol. 38, 22–41.PubMedCrossRefGoogle Scholar
  52. Mans, B.J., Louw, A.I., Neitz, A.W., 2002a. Amino acid sequence and structure modeling of savignin, a thrombin inhibitor from the tick, Ornithodoros savignyi. Insect Biochem. Mol. Biol. 32, 821–828.PubMedCrossRefGoogle Scholar
  53. Mans, B.J., Louw, A.I., Neitz, A.W., 2002b. Savignygrin, a platelet aggregation inhibitor from the soft tick Ornithodoros savignyi, presents the RGD integrin recognition motif on the Kunitz-BPTI fold. J. Biol. Chem. 277, 21371–21378.PubMedCrossRefGoogle Scholar
  54. Mans, B.J., Neitz, A.W., 2004. Adaptation of ticks to a blood-feeding environment: evolution from a functional perspective. Insect Biochem. Mol. Biol. 34, 1–17.PubMedCrossRefGoogle Scholar
  55. Maritz-Olivier, C., Stutzer, C., Jongejan, F., Neitz, A.W., Gaspar, A.R., 2007. Tick anti-hemostatics: targets for future vaccines and therapeutics. Trends Parasitol. 23, 397–407.PubMedCrossRefGoogle Scholar
  56. Markwardt, F., Landmann, H., 1958. Untersuchungen uber den blutgerinnungshemmenden wirdstoff der zecke Ixodes ricinus. Naturwissenschaften 45, 398–399.CrossRefGoogle Scholar
  57. Markwardt, F., Landmann, H., 1961. Ubereinen hemmstoff der thrombokinase aus der lederzecke Ornithodorous moubata. Naturwissenschaften 48, 433.CrossRefGoogle Scholar
  58. Monteiro, R.Q., Rezaie, A.R., Bae, J.S., Calvo, E., Andersen, J.F., Francischetti, I.M., 2008. Ixolaris binding to factor X reveals a precursor state of factor Xa heparin-binding exosite. Protein Sci. 17, 146–153.PubMedCrossRefGoogle Scholar
  59. Motoyashiki, T., Tu, A.T., Azimov, D.A., Ibragim, K., 2003. Isolation of anticoagulant from the venom of tick, Boophilus calcaratus, from Uzbekistan. Thromb. Res. 110, 235–241.PubMedCrossRefGoogle Scholar
  60. Nakajima, C., Imamura, S., Konnai, S., Yamada, S., Nishikado, H., Ohashi, K., Onuma, M., 2006. A novel gene encoding a thrombin inhibitory protein in a cDNA library from Haemaphysalis longicornis salivary gland. J. Vet. Med. Sci. 68, 447–452.PubMedCrossRefGoogle Scholar
  61. Narasimhan, S., Koski, R.A., Beaulieu, B., Anderson, J.F., Ramamoorthi, N., Kantor, F., Cappello, M., Fikrig, E., 2002. A novel family of anticoagulants from the saliva of Ixodes scapularis. Insect Mol. Biol. 11, 641–650.PubMedCrossRefGoogle Scholar
  62. Narasimhan, S., Montgomery, R.R., DePonte, K., Tschudi, C., Marcantonio, N., Anderson, J.F., Sauer, J.R., Cappello, M., Kantor, F.S., Fikrig, E., 2004. Disruption of Ixodes scapularis anticoagulation by using RNA interference. Proc. Natl. Acad. Sci. U.S.A. 101, 1141–1146.PubMedCrossRefGoogle Scholar
  63. Nienaber, J., Gaspar, A.R., Neitz, A.W., 1999. Savignin, a potent thrombin inhibitor isolated from the salivary glands of the tick Ornithodoros savignyi (Acari: Argasidae). Exp. Parasitol. 93, 82–91.PubMedCrossRefGoogle Scholar
  64. Nuttall, G.H.F., Strickland, C., 1908. On the presence of an anticoagulin in the salivary glands and intestines of Argas persicus. Parasitology 1, 302–310.Google Scholar
  65. Nuttall, P.A., Labuda, M., 2004. Tick-host interactions: saliva-activated transmission. Parasitology 129(Suppl), S177–S189.PubMedCrossRefGoogle Scholar
  66. Ramamoorthi, N., Narasimhan, S., Pal, U., Bao, F., Yang, X.F., Fish, D., Anguita, J., Norgard, M.V., Kantor, F.S., Anderson, J.F., Koski, R.A., Fikrig, E., 2005. The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436, 573–577.PubMedCrossRefGoogle Scholar
  67. Ribeiro, J.M., Francischetti, I.M., 2003. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu. Rev. Entomol. 48, 73–88.PubMedCrossRefGoogle Scholar
  68. Ribeiro, J.M., Makoul, G.T., Levine, J., Robinson, D.R., Spielman, A., 1985. Antihemostatic, antiinflammatory, and immunosuppressive properties of the saliva of a tick, Ixodes dammini. J. Exp. Med. 161, 332–344.PubMedCrossRefGoogle Scholar
  69. Ribeiro, J.M., Makoul, G.T., Robinson, D.R., 1988. Ixodes dammini: evidence for salivary prostacyclin secretion. J. Parasitol. 74, 1068–1069.PubMedCrossRefGoogle Scholar
  70. Ricci, C.G., Pinto, A.F., Berger, M., Termignoni, C., 2007. A thrombin inhibitor from the gut of Boophilus microplus ticks. Exp. Appl. Acarol. 42, 291–300.PubMedCrossRefGoogle Scholar
  71. Roller, L., Havlikova, S., Peterkova, K., Kazimirova, M., 2009. Unusual variability of potential thrombin inhibitors in salivary glands of the tropical bont tick Amblyomma variegatum, in: Špitalská, E., Kazimírová, M., Kocianová, E., Šustek, Z. (Eds.), Zborník z Konferencie “Labudove dni”, Virologický ústav SAV, Bratislava, pp. 55–57.Google Scholar
  72. Sabbatini, L., 1899. Fermento anticoagulante dell Ixodes ricinus. Arch. Ital. Biol. 31, 37.Google Scholar
  73. Sasaki, S.D., Azzolini, S.S., Hirata, I.Y., Andreotti, R., Tanaka, A.S., 2004. Boophilus microplus tick larvae, a rich source of Kunitz type serine proteinase inhibitors. Biochimie 86, 643–649.PubMedCrossRefGoogle Scholar
  74. Sauer, J.R., Essenberg, R.C., Bowman, A.S., 2000. Salivary glands in ixodid ticks: control and mechanism of secretion. J. Insect Physiol. 46, 1069–1078.PubMedCrossRefGoogle Scholar
  75. Sauer, J.R., McSwain, J.L., Bowman, A.S., Essenberg, R.C., 1995. Tick salivary gland physiology. Annu. Rev. Entomol. 40, 245–267.PubMedCrossRefGoogle Scholar
  76. Sonenshine, D.E., 1991. Biology of Ticks (vol. 1). Oxford University Press, New York, Oxford.Google Scholar
  77. Steen, N.A., Barker, S.C., Alewood, P.F., 2006. Proteins in the saliva of the Ixodida (ticks): pharmacological features and biological significance. Toxicon 47, 1–20.PubMedCrossRefGoogle Scholar
  78. Tanaka, A.S., Andreotti, R., Gomes, A., Torquato, R.J., Sampaio, M.U., Sampaio, C.A., 1999. A double headed serine proteinase inhibitor – human plasma kallikrein and elastase inhibitor -- from Boophilus microplus larvae. Immunopharmacology 45, 171–177.PubMedCrossRefGoogle Scholar
  79. Valenzuela, J.G., 2002. High-throughput approaches to study salivary proteins and genes from vectors of disease. Insect Biochem. Mol. Biol. 32, 1199–1209.PubMedCrossRefGoogle Scholar
  80. Valenzuela, J.G., 2004. Exploring tick saliva: from biochemistry to ‘sialomes’ and functional genomics. Parasitology 129(Suppl), S83–S94.PubMedCrossRefGoogle Scholar
  81. Valenzuela, J.G., Francischetti, I.M., Pham, V.M., Garfield, M.K., Mather, T.N., Ribeiro, J.M., 2002. Exploring the sialome of the tick Ixodes scapularis. J. Exp. Biol. 205, 2843–2864.PubMedGoogle Scholar
  82. van de Locht, A., Stubbs, M.T., Bode, W., Friedrich, T., Bollschweiler, C., Hoffken, W., Huber, R., 1996. The ornithodorin-thrombin crystal structure, a key to the TAP enigma? EMBO J. 15, 6011–6017.PubMedGoogle Scholar
  83. Wang, X., Coons, L.B., Taylor, D.B., Stevens, S.E., Jr., Gartner, T.K., 1996. Variabilin, a novel RGD-containing antagonist of glycoprotein IIb-IIIa and platelet aggregation inhibitor from the hard tick Dermacentor variabilis. J. Biol. Chem. 271, 17785–17790.PubMedCrossRefGoogle Scholar
  84. Waxman, L., Smith, D.E., Arcuri, K.E., Vlasuk, G.P., 1990. Tick anticoagulant peptide (TAP) is a novel inhibitor of blood coagulation factor Xa. Science 248, 593–596.PubMedCrossRefGoogle Scholar
  85. Wei, A., Alexander, R.S., Duke, J., Ross, H., Rosenfeld, S.A., Chang, C.H., 1998. Unexpected binding mode of tick anticoagulant peptide complexed to bovine factor Xa. J. Mol. Biol. 283, 147–154.PubMedCrossRefGoogle Scholar
  86. Wikel, S.K., 1996. The Immunology of Host-Ectoparasitic Arthropod Relationships. CAB International, Oxon, UK.Google Scholar
  87. Willadsen, P., Riding, G.A., 1980. On the biological role of a proteolytic-enzyme inhibitor from the ectoparasitic tick Boophilus microplus. Biochem. J. 189, 295–303.PubMedGoogle Scholar
  88. Zhu, K., Bowman, A.S., Brigham, D.L., Essenberg, R.C., Dillwith, J.W., Sauer, J.R., 1997a. Isolation and characterization of americanin, a specific inhibitor of thrombin, from the salivary glands of the lone star tick Amblyomma americanum (L.). Exp. Parasitol. 87, 30–38.PubMedCrossRefGoogle Scholar
  89. Zhu, K., Sauer, J.R., Bowman, A.S., Dillwith, J.W., 1997b. Identification and characterization of anticoagulant activities in the saliva of the lone star tick, Amblyomma americanum (L.). J. Parasitol. 83, 38–43.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Mária Kazimírová
    • 1
    Email author
  • Cho Yeow Koh
    • 2
  • R. Manjunatha Kini
    • 2
    • 3
  1. 1.Institute of ZoologySlovak Academy of SciencesBratislavaSlovakia
  2. 2.Protein Science Laboratory, Department of Biological SciencesNational University of SingaporeSingaporeSingapore
  3. 3.Department of Biochemistry and Molecular Biophysics, Medical College of VirginiaVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations