The Theory of Intraspecies Variation is Not the Exception, But Simply the Rule: The Diverse Hemostatic Activities of Snake Venoms

  • Alexis Rodríguez-AcostaEmail author
  • Belsy Guerrero
  • Elda E. Sánchez


Clinical unpredictability of snake envenomation by the same species has been previously illustrated. These symptoms have been well known in the most common genera, Bothrops and Crotalus. Variations between venoms among various geographic regions may be due to evolutionary environmental pressure, which continually acts on separated populations. Studies concerning the disparity of snake venom are fundamental for the understanding of snake phylogeny and most significantly for the investigation and production of suitable antivenoms to treat ophidic envenomation. In the Americas, a geographic intraspecific variation in snake venom composition has been described for Crotalus and Bothrops. Intraspecific venom differences takes place among specific snakes, most likely due to seasonal variation, diet, habitat, age, sexual dimorphism, along with other unidentified factors that could possibly be contributing to the individual variability of venom composition. Furthermore, diverse hemostatic activities of snake venoms differ in their biochemical structure and pharmacological profile, not only between different species, but also within species, and in snakes of diverse ages, sex and geographical localities. Most of these studies scarcely demonstrate the interspecies variation of venoms in specimens from far and near geographical locations, which sustain the need to incorporate pools of venoms of the same species found in different geographical environments that will be employed in immunization protocols for the production of antivenoms.


Fibrinolytic Activity Snake Venom Crude Venom Fibrin Plate Intraspecies Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adame, B.L., Soto, J.G., Secraw, D.J., Pérez, J.C., 1990. Regional variation of biochemical characteristics and antigenicity in Great basin rattlesnake (Crotalus viridis lutosus) venom. Comp. Biochem. Physiol. B. 97, 95–101.PubMedGoogle Scholar
  2. Aguilar, I., Guerrero, B., Salazar, A.M., Girón, M.E., Pérez, J.C., Sánchez, E.E., Rodríguez-Acosta, A., 2007. Individual venom variability in the South American rattlesnake Crotalus durissus cumanensis. Toxicon 50, 214–224.PubMedCrossRefGoogle Scholar
  3. Alape-Girón, A., Flores-Díaz, M., Sanz, L., Madrigal, M., Escolano, J., Sasa, M., Calvete, J.J., 2009. Studies on the venom proteome of Bothrops asper: perspectives and applications. Toxicon 54, 938–948.PubMedCrossRefGoogle Scholar
  4. Alape-Girón, A., Sanz, L., Escolano, J., Flores-Díaz, M., Madrigal, M., Sasa, M., Calvete, J.J., 2008. Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations. J. Proteome Res. 7, 3556–3571.PubMedCrossRefGoogle Scholar
  5. Amaral, C.F., Rezende, N.A., Pedrosa, T.M., da Silva, O.A., Pedroso, E.R., 1988. Afibrinogenemia secondary to crotalid snake bite (Crotalus durissus terrificus). Rev. Inst. Med. Trop. Sao Paulo 30, 288–292.PubMedCrossRefGoogle Scholar
  6. Calsbeek, R., 2009. Experimental evidence that competition and habitat use shape the individual fitness surface. J. Evol. Biol. 22, 97–108.PubMedCrossRefGoogle Scholar
  7. Campbell, J.A., Lamar, W.W., 2004. The Venomous Reptiles of the Western Hemisphere. Comstock Publishing Associates, Ithaca and London.Google Scholar
  8. Chippaux, J.P., Williams, V., White, J., 1991. Snake venom variability: methods of study, results and interpretation. Toxicon 29, 1279-1303.PubMedCrossRefGoogle Scholar
  9. Condrea, E., Fabian, I., De Vries, A., 1964. Action of plastid phospholipase D on free and lipoprotein-bound phospholipids. Experientia 20, 557–558.PubMedCrossRefGoogle Scholar
  10. Daltry, J.C., Ponnudurai, G., Shin, C.K., Tan, N.H., Thorpe, R.S, Wüster, W., 1996a. Electrophoretic profiles and biological activities: intraspecific variation in the venom of the Malayan pit viper (Calloselasma rhodostoma). Toxicon 34, 67–79.PubMedCrossRefGoogle Scholar
  11. Daltry, J.C., Wuster, W., Thorpe, R.S., 1996b. Diet and snake venom evolution. Nature 379, 537–540.PubMedCrossRefGoogle Scholar
  12. Douglas, M.E., Douglas, M.R., Schuett, G.W., Porras, L., Holycross, A.T., 2002. Phylogeography of the Western Rattlesnake (Crotalus viridis) complex (Reptilia: Viperidae), with emphasis on the Colorado plateau, in: Schuett, G.W., Hoggren, M., Douglas, M.E., Greene, H.W. (Eds.), Biology of the Vipers. Eagle Mountain Press, Salt Lake City, UT, pp. 11–50.Google Scholar
  13. Enghild, J.J., Salvesen, G., Brew, K., Nagase, H., 1989. Interaction of human rheumatoid synovial collagenase (matrix metalloproteinase 1) and stromelysin (matrix metalloproteinase 3) with human alpha 2-macroglobulin and chicken ovostatin. Binding kinetics and identification of matrix metalloproteinase cleavage sites. J. Biol. Chem 264, 8779–8785.PubMedGoogle Scholar
  14. Estrade, G., Garnier, D., Bernasconi, F., Donatien, Y., 1989. Pulmonary embolism and disseminated intravascular coagulation after being bitten by a Bothrops lanceolatus snake. Apropos of a case. Arch. Mal. Coeur. Vaiss 82, 1903–1905.PubMedGoogle Scholar
  15. Fernández, P., Gutiérrez, J.M., 2008. Mortality due to snakebite envenomation in Costa Rica (1993–2006). Toxicon 52, 530–533.PubMedCrossRefGoogle Scholar
  16. Francischetti, I.M., Gombarovits, M.E., Valenzuela, J.G., Carlini, C.R., Guimaraes, J.A., 2000. Intraspecific variation in the venoms of the South American rattlesnake (Crotalus durissus terrificus). Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 127, 23–36.PubMedGoogle Scholar
  17. Friberger, P., 1982. Chromogenic peptide substrates. Their use for the assay of factors in the fibrinolytic and the plasma kallikrein-kinin systems. Scand. J. Clin. Lab. Invest. Suppl. 16, 1–298.Google Scholar
  18. Furtado, M.F., Maruyama, M., Kamiguti, A.S., Antonio, L.C., 1991. Comparative study of nine Bothrops snake venoms from adult female snakes and their offspring. Toxicon 29, 219–226.PubMedCrossRefGoogle Scholar
  19. Furtado, M.F., 2005. Biological and immunological properties of the venom of Bothrops alcatraz, an endemic species of pitviper from Brazil. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 141, 117–123.PubMedCrossRefGoogle Scholar
  20. Galán, J.A., Sánchez, E.E., Rodríguez-Acosta, A., Pérez, J.C., 2004. Neutralization of venoms from two Southern Pacific Rattlesnakes (Crotalus helleri) with commercial antivenoms and endothermic animal sera. Toxicon 43, 791–799.PubMedCrossRefGoogle Scholar
  21. Girón, M.E., Salazar, A.M., Aguilar, I., Pérez, J.C., Sánchez, E.E., Arocha-Piñango, C.L., Rodríguez-Acosta, A., Guerrero, B., 2008. Hemorrhagic, coagulant and fibrino(geno)lytic activities of crude venom and fractions from mapanare (Bothrops colombiensis) snakes. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 147, 113–121.PubMedCrossRefGoogle Scholar
  22. Glenn, J.L., Straight, R.C., Wolfe, M.C., Hardy, D.L., 1983. Geographical variation in Crotalus scutulatus scutulatus (Mojave rattlesnake) venom properties. Toxicon 21, 119–130.PubMedCrossRefGoogle Scholar
  23. Glenn, J.L., Straight R., 1978. Mojave rattlesnake Crotalus scutulatus scutulatus venom: variation in toxicity with geographical origin. Toxicon 16, 81–84.PubMedCrossRefGoogle Scholar
  24. Gutiérrez, J.M., Rucavado, A., Escalante, T., Díaz, C., 2005. Hemorrhage induced by snake venom metalloproteinases: biochemical and biophysical mechanisms involved in microvessel damage. Toxicon 45, 997–1011PubMedCrossRefGoogle Scholar
  25. Kamiguti, A.S., Matsunaga, S., Spir, M., Sano-Martins, I.S., Nahas, L., 1986. Alterations of the blood coagulation system after accidental human inoculation by Bothrops jararaca venom. Braz. J. Med. Biol. Res. 19, 199–204.PubMedGoogle Scholar
  26. Kamiguti, A.S., Sano-Martins, I.S., 1995. South American snake venoms affecting haemostasis. J. Toxicol. Toxin Rev. 14, 359–374.CrossRefGoogle Scholar
  27. Kornacker, P.M., 1999. Checklist and Key to the Snakes of Venezuela. Lista Sistemática y Clave para las Serpientes de Venezuela. Pako-Verlag, Rheinbach, Germany.Google Scholar
  28. Matsui, T., Fujimura, Y., Titani, K., 2000. Snake venom proteases affecting hemostasis and thrombosis. Biochim. Biophys. Acta 1477, 146–156.PubMedCrossRefGoogle Scholar
  29. McDiarmid, R.W., Campbell, J.A., Toure, T., 1999. Snake Species of the World: A Toxonomic and Geographic Reference (vol. 1). Herpetologists’ League.Google Scholar
  30. Minton, S.A., Weinstein, S.A., 1986. Geographic and ontogenic variation in venom of the western diamondback rattlesnake (Crotalus atrox). Toxicon 24, 71–80.PubMedCrossRefGoogle Scholar
  31. Pućkowska, A., Midura-Nowaczek, K., Bruzgo, I., 2008. Effects of netropsin and pentamidine amino analogues on the amidolytic activity of plasmin, trypsin and urokinase. Acta. Pol. Pharm. 65, 213–215.PubMedGoogle Scholar
  32. Rengifo, C., Rodríguez-Acosta, A., 2005. Serpientes, Venenos y su Tratamiento en Venezuela. Fondo de Publicaciones de la Facultad de Medicina de la Universidad Central de Venezuela, Caracas.Google Scholar
  33. Ribeiro, L.A., Jorge, M.T., 1990. Epidemiology and clinical picture of accidents by adult and young snakes Bothrops jararaca. Rev. Inst. Med. Trop. Sao Paulo 32, 436–442.PubMedCrossRefGoogle Scholar
  34. Rodríguez-Acosta, A., Mondolfi, A., Orihuela, R., 1995. ¿Qué hacer frente a un accidente ofídico? Venediciones, CA, Caracas.Google Scholar
  35. Salazar, A.M., Rodriguez-Acosta, A., Girón, M.E., Aguilar, I., Guerrero, B., 2007. A comparative analysis of the clotting and fibrinolytic activities of the snake venom (Bothrops atrox) from different geographical areas in Venezuela. Thromb. Res. 120, 95–104.Google Scholar
  36. Salazar, A.M., Aguilar, I., Guerrero, B., Girón, M.E., Lucena, S., Sánchez, E.E., Rodríguez-Acosta, A., 2008. Intraspecies differences in hemostatic venom activities of the South American rattlesnakes, Crotalus durissus cumanensis, as revealed by a range of protease inhibitors. Blood. Coagul. Fibrinolysis 19, 525–530.PubMedCrossRefGoogle Scholar
  37. Salazar, A.M., Guerrero, B., Cantu, B., Cantu, E., Rodríguez-Acosta, A., Pérez, J.C., Galán, J.A., Tao, A., Sánchez, E.E., 2009. Venom variation in hemostasis of the southern Pacific rattlesnake (Crotalus oreganus helleri): isolation of hellerase. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 149, 307–316.PubMedCrossRefGoogle Scholar
  38. Sánchez, E.E., 2004. Aislamiento y Caracterización de Desintegrinas Presentes en el Veneno de Serpientes de los Estados Unidos de América y de Venezuela. Doctoral Thesis, Universidad Central de Venezuela Caracas, Venezuela and Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX, USA.Google Scholar
  39. Sánchez, E.E., Galán, J.A., Powell, R.L., Reyes, S.R., Soto, J.G., Russell, W.K., Russell, D.H., Pérez, J.C., 2005. Disintegrin, hemorrhagic, and proteolytic activities of Mohave rattlesnake, Crotalus scutulatus scutulatus venoms lacking Mojave toxin. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 141, 124–132.PubMedCrossRefGoogle Scholar
  40. Sánchez, E.E., Galán, J.A., Russell, W.K., Soto, J.G., Russell, D.H., Pérez, J.C., 2006. Isolation and characterization of two disintegrins inhibiting ADP-induced human platelet aggregation from the venom of Crotalus scutulatus scutulatus (Mohave Rattlesnake). Toxicol. Appl. Pharmacol. 212, 59–68.PubMedCrossRefGoogle Scholar
  41. Sánchez, E.E., Lopez-Johnston, J.C., Rodríguez-Acosta, A., Pérez, J.C., 2008. Neutralization of two North American coral snake venoms with United States and Mexican antivenoms. Toxicon 51, 297–303.PubMedCrossRefGoogle Scholar
  42. Sano-Martins, I.S., Tomy, S.C., Campolina, D., Dias, M.B., de Castro, S.C, de Sousa-Silva, M.C., Amaral, C.F., Rezende, N.A., Kamiguti, A.S., Warrell, D.A., Theakston, R.D., 2001. Coagulopathy following lethal and non-lethal envenoming of humans by the South American rattlesnake (Crotalus durissus) in Brazil. Q. J. Med. 94, 551–559.CrossRefGoogle Scholar
  43. Saravia, P., Rojas, E., Arce, V., Guevara, C., López, J.C., Chaves, E., Velásquez, R., Rojas, G., Gutiérrez, J.M., 2002. Geographic and ontogenic variability in the venom of the neotropical rattlesnake Crotalus durissus: pathophysiological and therapeutic implications. Rev. Biol. Trop. 50, 337–346.PubMedGoogle Scholar
  44. Sasa, M., 2002. Morphological variation in the lancehead pitviper Bothrops asper (Garman) (Serpentes: Viperidae) from Middle America. Rev. Biol. Trop. 50, 259–271.PubMedGoogle Scholar
  45. Swenson, S., Markland, F.S., Jr., 2005. Snake venom fibrin(ogen)olytic enzymes. Toxicon 45, 1021–1039.PubMedCrossRefGoogle Scholar
  46. Yoshida-Kanashiro, E., Navarrete, L., Rodriguez-Acosta, A., 2003. On the unusual hemorrhagic and necrotic activities caused by the rattlesnake (Crotalus durissus cumanensis) in a Venezuelan patient. Rev. Cub. Med. Trop. 55, 36–40.Google Scholar
  47. Young, R.A., Miller, D.M., Ochsner, D.C., 1980. The Grand Canyon rattlesnake (Crotalus viridis abyssus): comparison of venom protein profiles with other viridis subspecies. Comp. Biochem. Physiol. B. 66, 601–603.Google Scholar
  48. Zelanis, A., de SouzaVentura, J., Chudzinski-Tavassi, A.M., de Fátima Domingues Furtado, M., 2007. Variability in expression of Bothrops insularis snake venom proteases: an ontogenetic approach. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 145, 601–609.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Alexis Rodríguez-Acosta
    • 1
    Email author
  • Belsy Guerrero
    • 2
  • Elda E. Sánchez
    • 3
  1. 1.Immunochemistry Section, Tropical Medicine Institute of the Universidad Central de VenezuelaCaracasRepública Bolivariana de Venezuela
  2. 2.Laboratorio de Fisiopatología, Centro de Medicina ExperimentalInstituto Venezolano de Investigaciones Científicas (IVIC)CaracasRepública Bolivariana de Venezuela
  3. 3.Natural Toxins Research Center, College of Arts and SciencesTexas A&M University-KingsvilleKingsvilleUSA

Personalised recommendations