Bioactive Peptides and Proteins from Wasp Venoms

  • Ren LaiEmail author
  • Cunbao Liu


The members of Vespidae family include hornets (genera Vespa and Dolichovespula), yellow jackets (genus Vespula) and paper wasps (genus Polistes). The multi-sting capacity of their stingers together with their highly toxic venoms, makes them more aggressive in the defense of the colony or capture of the pray. Clinical symptoms induced in humans include local reactions (pain, wheal, edema and swelling) caused by biologically active peptides such as bradykinin-like peptides, chemotactic peptides and mastoparans, immunological reactions caused by venom allergens such as phospholipase A (PLA), hyaluronidase, antigen 5 and serine proteases which usually leading to anaphylaxis with subsequent anaphylactic shock, and systemic toxic reactions caused by large doses of venoms, resulting in hemolysis, coagulopathy, rhabdomyolysis, acute renal failure, hepatotoxicity, aortic thrombosis and cerebral infarction. The active components in wasp venoms, especially those acts on the cardiovascular system, nervous system and immunological systems of mammal, including humans, may show a promising perspective for the future discovery and application of potential pharmacological drugs.


Bioactive Peptide Chemotactic Peptide Hymenoptera Venom Wasp Venom Venom Immunotherapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aoki, J., 2004. Mechanisms of lysophosphatidic acid production. Semin. Cell. Dev. Biol. 15, 477–489.PubMedCrossRefGoogle Scholar
  2. Argiolas, A., Pisano, J.J., 1985. Bombolitins, a new class of mast cell degranulating peptides from the venom of the bumblebee Megabombus pennsylvanicus. J. Biol. Chem. 260, 1437–1444.PubMedGoogle Scholar
  3. Asgari, S., Zhang, G., Zareie, R., Schmidt, O., 2003. A serine proteinase homolog venom protein from an endoparasitoid wasp inhibits melanization of the host hemolymph. Insect Biochem. Mol. Biol. 33, 1017–1024.PubMedCrossRefGoogle Scholar
  4. Backman, A., Belin, L., Dreborg, S., Halvorsen, R., Malling, H.J., Weeke, B., 1991. Standardization of allergenic preparations. Comments with reference to the second edition of the common Nordic guidelines for registration of allergenic preparations. Allergy 46, 81–84.PubMedCrossRefGoogle Scholar
  5. Baldini, P.M., De Vito, P., D’aquilio, F., Vismara, D., Zalfa, F., Bagni, C., Fiaccavento, R., Di Nardo, P., 2005. Role of atrial natriuretic peptide in the suppression of lysophosphatydic acid-induced rat aortic smooth muscle (RASM) cell growth. Mol. Cell Biochem. 272, 19–28.PubMedCrossRefGoogle Scholar
  6. Bhoola, K.D., Figueroa, C.D., Worthy, K., 1992. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol. Rev. 44, 1–80.PubMedGoogle Scholar
  7. Biló, B.M., Rueff, F., Mosbech, H., Bonifazi, F., Oude-Elberink, J.N., 2005. EAACI interest group on insect venom hypersensitivity. Diagnosis of hymenoptera venom allergy. Allergy 60, 1339–1349.PubMedCrossRefGoogle Scholar
  8. Boonacker, E., Van Noorden, C.J., 2003. The multifunctional or moonlighting protein CD26/DPPIV. Eur. J. Cell. Biol. 82, 53–73.PubMedCrossRefGoogle Scholar
  9. Bousquet, J., Lockey, R., Malling, H.J., 1998. Allergen immunotherapy: therapeutic vaccines for allergic diseases. J. Allergy Clin. Immunol. 102, 558–562.PubMedCrossRefGoogle Scholar
  10. Cascone, O., Amaral, V., Ferrara, P., Vita, N., Guillemot, J.C., Diaz, L.E., 1995. Purification and characterization of two forms of antigen 5 from Polybia scutellaris venom. Toxicon 33, 659–665.PubMedCrossRefGoogle Scholar
  11. Cerovský, V., Pohl, J., Yang, Z., Alam, N., Attygalle, A.B., 2007. Identification of three novel peptides isolated from the venom of the neotropical social wasp Polistes major major. J. Pept. Sci. 13, 445–450.PubMedCrossRefGoogle Scholar
  12. Chao, S.C., Lee, Y.Y., 1999. Acute rhabdomyolysis and intravascular hemolysis following extensive wasp stings. Int. J. Dermatol. 38, 135–137.PubMedCrossRefGoogle Scholar
  13. Charpin, D., Birnbaum, J., Lanteaume, A., Vervloet, D., 1992. Prevalence of allergy to hymenoptera stings in different samples of the general population. J. Allergy Clin. Immunol. 90, 331–334.PubMedCrossRefGoogle Scholar
  14. Charpin, D., Vervloet, D., Haddi, E., Segalen, C., Tafforeau, M., Birnbaum, J, et al., 1990. Prevalence of allergy to Hymenoptera stings. Allergy Proc. 11, 29–32.PubMedCrossRefGoogle Scholar
  15. Chen, D.M., Lee, P.T., Chou, K.J., Fang, H.C., Chung, H.M., Chen, D.M., Chang, L.K., 2004. Descending aortic thrombosis and cerebral infarction after massive wasp stings. Am. J. Med. 116, 567–569.PubMedCrossRefGoogle Scholar
  16. De Graaf, D.C., Alerts, M., Danneels, E., Devreese, B., 2009. Bee, wasp and ant venomics pave the way for a component-resolved diagnosis of sting allergy. J. Proteomics 72, 145–154.PubMedCrossRefGoogle Scholar
  17. De Oliveria, M.R., Palma, M.S., 1998. Polybitoxins: a group of phospholipases A2 from the venom of the neotropical social wasp paulistinha (Polybia paulista). Toxicon 36, 189–199.CrossRefGoogle Scholar
  18. Dohtsu, K., Okumura, K., Hagiwara, K., Palma, M.S., Nakajima, T., 1993. Isolation and sequence analysis of peptides from the venom of Protonectarina sylveirae (Hymenoptera-Vespidae). Nat. Toxins 1, 271–276.PubMedCrossRefGoogle Scholar
  19. Dotimas, E.M., Hamid, K.R., Hider. R.C., Ragnarsson, U., 1987. Isolation and structure analysis of bee venom mast cell degranulating peptide. Biochim. Biophys. Acta 911, 285–293.PubMedCrossRefGoogle Scholar
  20. Dudler, T., Machado, D.C., Kolbe, L., Annand, R.R., Rhodes, N., Gelb, M.H., Koelsch, K., Suter, M., Helm, B.A., 1995. A link between catalytic activity, IgE-independent mast cell activation, and allergenicity of bee venom phospholipase A2. J. Immunol. 155, 2605–2613.PubMedGoogle Scholar
  21. Ebo, D.G., 2007. Hymenoptera venom allergy. Verh. K. Acad. Geneeskd. Belg. 69, 213–230.PubMedGoogle Scholar
  22. Edery, H., Ishay, J., Gitter, S., Joshua, H., 1978. Venom of vespidae, in: Bettini, S. (Ed.), Arthropod Venoms. Sprinter Verlag, Berlin, New York, pp. 691–771.CrossRefGoogle Scholar
  23. Eldefrawi, A.T., Eldefrawi, M.E., Konno, K., Mansour, N.A., Nakanishi, K., Oltz, E., Usherwood, P.N., 1988. Structure and synthesis of a potent glutamate receptor antagonist in wasp venom. Proc. Natl. Acad. Sci. U.S.A. 85, 4910–4913.PubMedCrossRefGoogle Scholar
  24. Evans, R., Summers, S., 1986. Clinical aspects of hymenoptera sensitivity, in: Levine, M.I., Lockey R.F. (Eds.), American Academy of Allergy and Immunology. Monography on Insect Allergy. Lambert Associates, Pittsburgh, pp. 23–28.Google Scholar
  25. Frew, A.J., 2003. Immunotherapy of allergic disease. J. Allergy Clin. Immunol. 111(2 Suppl), S712–S719.PubMedCrossRefGoogle Scholar
  26. Goetzl, E.J., An, S., 1998. Diversity of cellular receptors and functions for the lysophopholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. FASEB J. 12, 1589–1598.PubMedGoogle Scholar
  27. Habermann, E., 1972. Bee and wasp venoms. Science 177, 314–322.PubMedCrossRefGoogle Scholar
  28. Halfon, S., Craik, C.S., 1998. Introduction: serine peptidases and their clan, in: Barrett, A.J., Rawlings, N.D., Woessner, J.F. (Eds.), Handbook of Proteolytic Enzyme. Academic Press, London, pp. 3–4.Google Scholar
  29. Han, J., You, D., Xu, X., Han, W., Lu, Y., Lai, R., Meng, Q., 2008. An anticoagulant serine protease from the venom of Vespa magnifica. Toxicon 51, 914–922.PubMedCrossRefGoogle Scholar
  30. Hancock, R.E., Falla, T., Brown, M., 1995. Cationic bactericidal peptides. Adv. Microb. Physiol. 37, 135–175.PubMedCrossRefGoogle Scholar
  31. Harvey, A.L., Bradley, K.N., Cochran, S.A., Rowan, E.G., Pratt, J.A., Quillfeldt, J.A., Jerusalinsky, D.A., 1998. What can toxins tell us for drug discovery? Toxicon 38, 745–746.Google Scholar
  32. Hemmer, W., Focke, M., Kolarich, D., Dalik, I., Gotz, M., Jarisch, R., 2004. Identification by immunoblot of venom glycoproteins displaying immunoglobulin E-binding N-glycans as cross-reactive allergens in honeybee and yellow jacket venom. Clin. Exp. Allergy 34, 460–469.PubMedCrossRefGoogle Scholar
  33. Henriksen, A., King, T.P., Mirza, O., Monsalve, R.I., Meno, K., Ipsen, H., Larsen, J.N., Gajhede, M., Spangfort, M.D., 2001. Major venom allergen of yellow jackets, Ves v 5: structural characterization of a pathogenesis-related protein superfamily. Proteins 4, 438–448.CrossRefGoogle Scholar
  34. Higashijima, T., Burnier, J., Ross, E.M., 1990. Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity. J. Biol. Chem. 265, 14176–14186.PubMedGoogle Scholar
  35. Higashijima, T., Inubushi, T., Ueno, T., Miyazawa, T., 1979. NMR saturation transfer and line shape analyses of cyclic tetradepsipeptide AM toxin II: conformational equilibrium with very unequal populations. FEBS Lett. 105, 337–340.PubMedCrossRefGoogle Scholar
  36. Higashijima, T., Uzu, S., Nakajima, T., Ross, E.M., 1988. Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). J. Biol. Chem. 263, 6491–6494.PubMedGoogle Scholar
  37. Hirai, Y., Kuwada, M., Yasuhara, T., Yoshida, H., Nakajima, T., 1979a. A new mast cell degranulating peptide homologous to mastoparan in the venom of Japanese hornet (Vespa xanthoptera). Chem. Pharm. Bull (Tokyo) 27, 1945–1946.CrossRefGoogle Scholar
  38. Hirai, Y., Yasuhara, T., Yoshida, H., Nakajima, T., Fujino, M., Kitada, C., 1979b. A new mast cell degranulating peptide “mastoparan” in the venom of Vespula lewisii. Chem. Pharm. Bull (Tokyo) 27, 1942–1944.CrossRefGoogle Scholar
  39. Hirata, Y., Atsumi, M., Ohizumi, Y., Nakahata, N., 2003. Mastoparan binds to glycogen phosphorylase to regulate sarcoplasmic reticular Ca2+ release in skeletal muscle. Biochem. J. 371, 81–88.PubMedCrossRefGoogle Scholar
  40. Hirata, Y., Nakahata, N., Ohizumi, Y., 2000. Identification of a 97-kDa mastoparan-binding protein involving in Ca2+ release from skeletal muscle sarcoplasmic reticulum. Mol. Pharmacol. 57, 1235–1242.PubMedGoogle Scholar
  41. Ho, C.L., Hwang, L.L., 1991. Structure and biological activities of a new mastoparan isolated from the venom of the hornet Vespa basalis. Biochem. J. 274, 453–456.PubMedGoogle Scholar
  42. Hoffman, D.R., 1978. Allergens in hymenoptera venom V: identification of some of the enzymes and demonstration of multiple allergens in yellow jacket venom. Ann. Allergy 40, 171–176.PubMedGoogle Scholar
  43. Hoffman, D.R., 1985. Allergens in hymenoptera venom XV: the immunologic basis of vespid venom cross-reactivity. J. Allergy Clin. Immunol. 75, 611–613.PubMedCrossRefGoogle Scholar
  44. Hoffman, D.R., 1986. Allergens in hymenoptera venom XVI: studies of the structures and cross-reactivities of vespid venom phospholipases. J. Allergy Clin. Immunol. 78, 337–343.PubMedCrossRefGoogle Scholar
  45. Hoffman, D.R., 1993. Allergens in hymenoptera venom XXV: the amino acid sequences of antigen 5 molecules and the structural basis of antigenic cross-reactivity. J. Allergy Clin. Immunol. 92, 707–716.PubMedCrossRefGoogle Scholar
  46. Hoffman, D.R., Jacobson, R.S., 1984. Allergens in hymenoptera venom XII: how much protein is in a sting? Ann. Allergy 52, 276–278.Google Scholar
  47. Höller, C., Freissmuth, M., Nanoff, C., 1999. G proteins as drug targets. Cell. Mol. Life Sci. 55, 257–270.PubMedCrossRefGoogle Scholar
  48. Johansson, S.G., Hourihane, J.O., Bousquet, J., Bruijnzeel-Koommen, C., Dreborg, S., Haahtela. T., Kowalski, M.L., Mygind, N., Ring, J., van Cauwenberge, P., van Hage-Hamsten, M., Wuthrich, B., 2001. A revised nomenclature for allergy. An EAACI position statement from the EAACI nomenclature task force. Allergy 56, 813–824.PubMedCrossRefGoogle Scholar
  49. Kasahara, M., Gutknecht, J., Brew, K., Spurr, N., Goodfellow, P.N., 1989. Cloning and mapping of a testis-specific gene with sequence similarity to a sperm-coating glycoprotein gene. Genomics 5, 527–534.PubMedCrossRefGoogle Scholar
  50. King, T.P., Alagon, A.C., Kuan, J., Sobotka, A.F., Lichtestein, L.M., 1983. Immunochemical studies of yellow jacket venom proteins. Mol. Immunol. 20, 297–308.PubMedCrossRefGoogle Scholar
  51. King, T.P., Guralnick, M., 2004. Hymenoptera allergens. Clin. Allergy Immunol. 18, 339–353.PubMedGoogle Scholar
  52. King, T.P., Joslyn, A., Kochoumian, L., 1985. Antigenic cross-reactivity of venom proteins from hornet, wasps, and yellow jackets. J. Allergy Clin. Immunol. 75, 621–628.PubMedCrossRefGoogle Scholar
  53. King, T.P., Kochoumian, L., Joslyn, A., 1984. Wasp venom proteins: phospholipase A1 and B. Arch. Biochem. Biophys. 230, 1–12.PubMedCrossRefGoogle Scholar
  54. King, T.P., Kochoumian, L., Lam, T., 1987. Immunochemical observations of antigen 5, a major venom allergen of hornets, yellow jackets and wasps. Mol. Immunol. 24, 857–864.PubMedCrossRefGoogle Scholar
  55. King, T.P., Lu, G., Gonzalez, M., Qian, N., Soldatova, L., 1996. Yellow jacket venom allergens, hyaluronidase and phospholipase: sequence similarity and antigenic cross-reactivity with their hornet and wasp homologs and possible implications for clinical allergy. J. Allergy Clin. Immunol. 98, 588–600.PubMedCrossRefGoogle Scholar
  56. King, T.P., Sobotka, A.K., Alagon, A., Kchoumian, L., Lichtenstein, L.M., 1978. Protein allergens of white-faced hornet, yellow hornet, and yellow jacket venom. Biochemistry 17, 5165–5174.PubMedCrossRefGoogle Scholar
  57. King, T.P., Valentine, M.D., 1987. Allergens of hymenopteran venoms. Clin. Rev. Allergy 5, 137–148.PubMedGoogle Scholar
  58. Kini, R.M., 1997. Phospholipase A2 – a complex multifunctional protein puzzle, in: Kini, R.M. (Ed.), Venom Phospholipase A2 Enzymes: Structure, Function and Mechanism. Wiley, England, pp. 1–28.Google Scholar
  59. Kitagawa, H., Kitamura, N., Hayashida, H., Miyata, T., Nakanishi, S., 1987. Differing expression patterns and evolution of the rat kininogen gene family. J. Biol. Chem. 262, 2190–2198.PubMedGoogle Scholar
  60. Kitamura, N., Ohkubo, H., Nakanishi, S., 1987. Molecular biology of the angiotesinogen and kininogen genes. J. Cardiovasc. Pharmacol. 7(Suppl), 49–53.CrossRefGoogle Scholar
  61. Kolarich, D., Léonard, R., Hemmer, W., Altmann, F., 2005. The N-glycans of yellow jacket venom hyaluronidases and the protein sequence of its major isoform in Vespula vulgaris. FEBS J. 272, 5182–5190.PubMedCrossRefGoogle Scholar
  62. Konno, K., Hisada, M., Fontana, R., Lorenzi, C.C., Naoki, H., Itagaki, Y., Miwa, A., Kawai, N., Nakata, Y., Yasuhara, T., Ruggiero Neto, J., de Azevedo, W.F., Jr., Palma, M.S., Nakajima, T., 2001. Anoplin, a novel antimicrobial peptide from the venom of the solitary wasp Anoplius samariensis. Biochim. Biophys. Acta 1550, 70–80.PubMedCrossRefGoogle Scholar
  63. Konno, K., Hisada, M., Naoki, H., Itagaki, Y., Fontana, R., Rangel, M., Oliveira, J.S., Cabrera, M.P., Neto, J.R., Hide, I., Nakata, Y., Yasuhara, T., Nakajima, T., 2006. Eumenitin, a novel antimicrobial peptide from the venom of the solitary eumenine wasp Eumenes rubronotatus. Peptides 27, 2624–2631.PubMedCrossRefGoogle Scholar
  64. Konno, K., Hisada, M., Naoki, H., Itagaki, Y., Kawai, N., Miwa, A., Yasuhara, T., Morimoto, Y., Nakata, Y., 2000. Structure and biological activities of eumenine mastoparan-AF (EMP-AF), a new mast cell degranulating peptide in the venom of the solitary wasp (Anterhynchium flavomarginatum micado). Toxicon 38, 1505–1515.PubMedCrossRefGoogle Scholar
  65. Korman, S.H., Jabbour, S., Harari, M.D., 1990. Multiple hornet (Vespa orientalis) stings with fatal outcome in a child. J. Paediatr. Child Health 26, 283–285.PubMedCrossRefGoogle Scholar
  66. Kuchler, K., Gmachl, M., Sippl, M.J., Kreil, G., 1989. Analysis of the cDNA for phospholipase A2 from honeybee venom glands. The deduced amino acid sequence reveals homology to the corresponding vertebrate enzymes. Eur. J. Biochem. 184, 249–254.PubMedCrossRefGoogle Scholar
  67. Kühn-wache, K., Hoffmann, T., Manhart, S., Brandt, W., Demuth, H., 2003. The specificity of DPP-IV for natural substrates is peptide structure determined, in: Hildebrandt, M., Klapp, B., Hoffmamm, T., Demuth, H.U. (Eds.), Dipeptidyl Aminopeptidase in Health and Disease. Kluwer Academic/Plenum Publishers, New York, pp. 57–63.Google Scholar
  68. Lai, R., Liu, H., Lee, W.H., Zhang, Y., 2001. A novel bradykinin-related peptide from skin secretions of toad Bombina maxima and its precursor containing six identical copies of the final product. Biochem. Biophys. Res. Commun. 286, 259–263.PubMedCrossRefGoogle Scholar
  69. Levings, M.K., Sangregorio, R., Galbiati, F., Squadrone, S., de Waal Malefyt, R., Roncarolo, M.G., 2001. IFN-alpha and IL-10 induce the differentiation of human type 1 T regulatory cells. J. Immunol. 166, 5530–5539.PubMedGoogle Scholar
  70. Lichtenstein, L.M., Valentine, M.D., Sobotka, A.K., 1979. Insect allergy: the state of the art. J. Allergy Clin. Immunol. 64, 5–12.PubMedCrossRefGoogle Scholar
  71. Littler, S., Wypych J.I., Noble, R.W., Abeyounis, C.J., Reisman, R.E., 1985. Allergenic components of bald-faced hornet (V. maculata) venom. Int. Arch. Allergy Appl. Immunol. 76, 1–8.PubMedCrossRefGoogle Scholar
  72. Lu, G., Kochoumian, L., King, T.P., 1995. Sequence identity and antigenic cross-reactivity of white face hornet venom allergen, also a hyaluronidase, with other proteins. J. Biol. Chem. 270, 4457–4465.PubMedCrossRefGoogle Scholar
  73. Machado, D.C., Horton, D., Harrop, R., Peachell, P.T., Helm, B.A., 1996. Potential allergens stimulate the release of mediators of the allergic response from cells of mast cell lineage in the absence of sensitization with antigen-specific IgE. Eur. J. Immunol. 26, 2972–2980.PubMedCrossRefGoogle Scholar
  74. Mamessier, E., Birbaum, J., Dupuy, P., Vervloet, D, Magnan, A., 2006. Ultra-rush venom immunotherapy induces differential T cell activation and regulatory patterns according to the severity of allergy. Clin. Exp. Allergy 36, 704–713.PubMedCrossRefGoogle Scholar
  75. Markland F.S. Jr., 1997. Snake venoms. Drugs 54(Suppl 3), 1–10.PubMedCrossRefGoogle Scholar
  76. McCafferty, D.G., Cudic, P., Yu, M.K., Behenna, D.D., Kruger, R., 1999. Synergy and duality in peptide antibiotic mechanisms. Curr. Opin. Chem. Biol. 3, 672–680.PubMedCrossRefGoogle Scholar
  77. Mendes, M.A., de Souza, B.M., Palma, M.S., 2005. Structural and biological characterization of three novel mastoparan peptides from the venom of the neotropical social wasp Protopolybia exigua (Saussure). Toxicon 45, 101–106.PubMedCrossRefGoogle Scholar
  78. Mentlein, R., Rix, H., Feller, A.C., Heymann, E., 1986. Characterization of dipeptidyl peptidase IV from lymphocytes of chronic lymphocytic leukemia of T-type. Biomed. Biochim. Acta 45, 567–574.PubMedGoogle Scholar
  79. Mizuno, K., Nakahata, N., Ohizumi, Y., 1995. Mastoparan-induced phosphatidylcholine hydrolysis by phospholipase D activation in human astrocytoma cells. Br. J. Pharmacol. 116, 2090–2096.PubMedCrossRefGoogle Scholar
  80. Mortari, M.R., Cunha, A.O., Carolino, R.O., Coutinho-Netto, J., Tomaz, J.C., Lopes, N.P., Coimbra, N.C., Dos Santos, W.F., 2007. Inhibition of acute nociceptive responses in rats after i.c.v. injection of Thr6-braykinin, isolated from the venom of the wasp of the social wasp, Polybia occidentalis. Br. J. Pharmacol. 151, 860–869.PubMedCrossRefGoogle Scholar
  81. Mosbech H., 1983. Deaths resulting from bee and wasp stings in Denmark 1960–1980. Ugeskr. Laeger 145, 1757–1760.PubMedGoogle Scholar
  82. Müller, U.R., 1998. Hymenoptera venom hypersensitivity: an update. Clin. Exp. Allergy 28, 4–6.PubMedCrossRefGoogle Scholar
  83. Müller, U.R., 2001. New developments in the diagnosis and treatment of hymenoptera venom allergy. Int. Arch. Allergy. Immunol. 124, 447–453.PubMedCrossRefGoogle Scholar
  84. Nakahata, N., Abe, M.T., Matsuoka, I., Nakanishi, H., 1990. Mastoparan inhibits phosphoinositide hydrolysis via pertussis toxin-insensitive G-protein in human astrocytoma cells. FEBS Lett. 260, 91–94.PubMedCrossRefGoogle Scholar
  85. Nakajima, T., 1984. Biochemistry of vespid venoms, in: Tu, A.T. (Ed.), Handbook of Natural Toxins. Marcel Dekker, New York, pp. 109–133.Google Scholar
  86. Nakajima, T., Uzu, S., Wakamatsu, K., Saito, K., Miyazawa, T., Yasuhara, T., Tsukamoto, Y., Fujino, M., 1986. Amphiphilic peptides in wasp venom. Biopolymers 25(Suppl), S115–S121.PubMedGoogle Scholar
  87. Nakajima, T., Yasuhara, T., 1977. A new mast cell degranulating peptide, granuliberin-R, in the frog (Rana rugosa) skin. Chem. Pharm. Bull (Tokyo) 25, 2464–2465.CrossRefGoogle Scholar
  88. Nakanishi, S., 1987. Substance P precursor and kininogen: their structures, gene organizations, and regulation. Physiol. Rev. 67, 1117–1142.PubMedGoogle Scholar
  89. Okano, Y., Takagi, H., Tohmatsu, T., Nakashima, S., Kuroda, Y., Saito, K., Nozawa, Y., 1985. A wasp venom mastoparan-induced polyphosphoinositide breakdown in rat peritoneal mast cells. FEBS Lett. 188, 363–366.PubMedCrossRefGoogle Scholar
  90. Ozaki, Y., Matsumoto, Y., Yatomi, Y., Higashihara, M., Kariya, T., Kume, S., 1990. Mastoparan, wasp venom, activates platelets via pertussis toxin-sensitive GTP-binding proteins. Biochem. Biophys. Res. Commun. 170, 779–785.PubMedCrossRefGoogle Scholar
  91. Perianin, A., Snyderman, R., 1989. Mastoparan, a wasp venom peptide, identifies two discrete mechanisms for elevating cytosolic calcium and inositol trisphosphates in human polymorphonuclear leukocytes. J. Immunol. 143, 1669–1673.PubMedGoogle Scholar
  92. Pfeiffer, D.R., Gudz, T.I., Novgorodov, S.A., Erdahl, W.L., 1995. The peptide mastoparan is a potent facilitator of the mitochondrial permeability transition. J. Biol. Chem. 270, 4923–4932.PubMedCrossRefGoogle Scholar
  93. Piek, T., 1982. Delta-philanthotoxin, a semi-irreversible blocker of ion-channels. Comp. Biochem. Physiol. C. 72, 311–315.PubMedCrossRefGoogle Scholar
  94. Piek, T., 1984. Pharmacology of hymenoptera venom, in: Tu, A.T. (Ed.), Handbook of Natural Toxins (vol. 2). Marcel Dekker, New York, pp. 135–185.Google Scholar
  95. Piek, T., 1991. Neurotoxic kinins from wasp and ant venoms. Toxicon 29, 139–149.PubMedCrossRefGoogle Scholar
  96. Piek, T., Hue, B., Mantel, P., Nakajima, T., Pelhate, M., Yasuhara T., 1990. Threonine 6-bradykinin in the venom of the wasp Colpa interrupta (F.) presynaptically blocks nicotinic synaptic transmission in the insect CNS. Comp. Biochem. Physiol. C. 96, 157–162.PubMedCrossRefGoogle Scholar
  97. Piek, T., Hue, B., Mony, L., Nakajima, T., Pelhate, M., Yasuhara, T., 1987. Block of synaptic transmission in insect CNS by toxins from the venom of the wasp Megascolia flavifrons (Fab.). Comp. Biochem. Physiol. C. 87, 287–295.PubMedCrossRefGoogle Scholar
  98. Piek, T., Spanjer, W., 1986. Chemistry and pharmacology of solitary wasp venoms, in: Piek, T. (Ed.), Venoms of the Hymenoptera. Academic Press, London, pp. 161–307.Google Scholar
  99. Piek, T., Mantel, P., Van Ginkel, C.J., 1984. Megascoliakinin, a bradykinin-like compound in the venom of Megascolia flavifrons Fab (Hymenoptera: Scoliidae). Comp. Biochem. Physiol. C. 78, 473–474.PubMedCrossRefGoogle Scholar
  100. Pirkle, H., 1998. Thrombin-like enzymes from snake venoms: an updated inventory. Scientific and standardization committee’s resgistry of exogenous hemostatic factors. Thromb. Haemost. 79, 675–683.PubMedGoogle Scholar
  101. Reiman, R.E., Müller U.R., Wypych, J.I., Lazell, M.I., 1984. Studies of coexisting honeybee and vespid-venom sensitivity. J. Allergy Clin. Immunol. 73, 246–252.CrossRefGoogle Scholar
  102. Reisman, R.E., Livingston, A., 1992. Venom immunotherapy: 10 years of experience with administration of single venoms and 50 micrograms maintenance doses. J. Allergy Clin. Immunol. 89, 1189–1195.PubMedCrossRefGoogle Scholar
  103. Sahara, Y., Gotoh, M., Konno, K., Miwa, A., Tsubokawa, H., Robinson, H.P., Kawai, N., 2000. A new class of neurotoxin from wasp venom slows inactivation of sodium current. Eur. J. Neurosci. 12, 1961–1970.PubMedCrossRefGoogle Scholar
  104. Sakhuja, V., Bhalla, A., Pereira, B.J., Kapoor, M.M., Bhusnurmath, S.R., Chugh, K.S., 1988. Acute renal failure following multiple hornet stings. Nephron 49, 319–321.PubMedCrossRefGoogle Scholar
  105. Sanchez, F., Blanca, M., Miranda, A., Carmona, M.J., Garcia, J., Fernandez, J., Torres, M.J., Rondon, M.C., Juarez, C., 1994. Comparison of Vespula germanica venoms obtained from different sources. Int. Arch. Allergy Immunol. 104, 385–389.PubMedCrossRefGoogle Scholar
  106. Schumacher, M.J., Tveten, M.S., Egen, N.B., 1994. Rate and quantity of delivery of venom from honeybee stings. J. Allergy Clin. Immunol. 93, 831–835.PubMedCrossRefGoogle Scholar
  107. Seegers, W.H., Ouyang, C., 1979. Snake venoms and blood coagulation, in: Lee, C.Y. (Ed.), Handbook of Experimental Pharmacology (vol. 52), pp. 684–750.Google Scholar
  108. Serrano, S.M., Maroun, R.C., 2005. Snake venom serine proteases: sequence homology vs. substrate specificity, a paradox to be solved. Toxicon 45, 1115–1132.PubMedCrossRefGoogle Scholar
  109. Simmaco, M., Mignogna, G., Barra, D., 1999. Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers 47, 435–450.CrossRefGoogle Scholar
  110. Soldatova, L., Kochoumian, L., King, T.P., 1993. Sequence similarity of a hornet (D. maculata) venom allergen phospholipase A1 with mammalian lipases. FEBS Lett. 320, 145–149.PubMedCrossRefGoogle Scholar
  111. Song, D.L., Chang, G.D., Ho, C.L., Chang, C.H., 1993. Structural requirements of mastoparan for activation of membrane-bound guanylate cyclase. Eur. J. Pharmacol. 247, 283–288.PubMedCrossRefGoogle Scholar
  112. Sugama, J., Ohkubo, S., Atsumi, M., Nakahata, N., 2005. Mastoparan changes the cellular localization of Gαq/11 and Gβ through its binding to ganglioside in lipid rafts. Mol. Pharmacol. 68, 1466–1474.PubMedCrossRefGoogle Scholar
  113. Takano, M., Kondo, J., Yayama, K., Otani, M., Sano, K., Okamoto, H., 1997. Molecular cloning of cDNAs for mouse low-molecular-weight and high-molecular-weight prekininogens. Biochim. Biophys. Acta 1352, 222–230.PubMedCrossRefGoogle Scholar
  114. Todokoro, Y., Yumen, L., Fukushima, K., Kang, S.W., Park, J.S., Kohno, T., Wakamatsu, K., Akutsu, H., Fujiwara, T., 2006. Structure of tightly membrane-bound mastoparan-X, a G-protein-activating peptide, determined by solid-state NMR. Biophys. J. 91, 1368–1379.PubMedCrossRefGoogle Scholar
  115. Watemberg, N., Weizman, Z., Shahak, E., Aviram, M., Maor, E., 1995. Fatal multiple organ failure following massive hornet stings. J. Toxicol. Clin. Toxicol. 33, 471–474.PubMedCrossRefGoogle Scholar
  116. Winningham, K.M., Fitch, C.D., Schmidt, M., Hoffman, D.R., 2004. Hymenoptera venom protease allergens. J. Allergy Clin. Immunol. 114, 928–933.PubMedCrossRefGoogle Scholar
  117. Wu, M., Hancock, R.E., 1999. Interaction of the cyclic antimicrobial cationic peptide bectenecin with the outer and cytoplasmic membrane. J. Biol. Chem. 274, 29–35.PubMedCrossRefGoogle Scholar
  118. Wypych, J.I., Abeyounis, C.J., Reisman, R.E., 1989. Analysis of differing patterns of cross-reactivity of honeybee and yellow jacket venom-specific IgE: use of purified venom fractions. Int. Arch. Allergy Appl. Immunol. 89, 60–66.PubMedCrossRefGoogle Scholar
  119. Xu, X., Li, J., Lu, Q., Yang, H., Zhang, Y., Lai, R., 2006a. Two families of antimicrobial peptides from wasp (Vespa magnifica) venom. Toxicon 47, 249–253.PubMedCrossRefGoogle Scholar
  120. Xu, X., Yang, H., Yu, H., Li, J., Lai, R., 2006b. The mastoparanogen from wasp. Peptides 27, 3053–3057.PubMedCrossRefGoogle Scholar
  121. Yamamoto, T., Arimoto, H., Kinumi, T., Oba, Y., Uemura, D., 2007. Identification of proteins from venom of the paralytic spider wasp, Cyphononyx dorsalis elastase. Insect Biochem. Mol. Biol. 37, 278–286.PubMedCrossRefGoogle Scholar
  122. Yang, H.L., Xu, X.Q., Ma, D.Y., Zhang, K.Y., Lai, R., 2007. A phospholipase A1 platelet activator from the wasp venom of Vespa magnifica (Smith). Toxicon 51, 289–296.PubMedCrossRefGoogle Scholar
  123. Yasuhara, T., Mantel, P., Nakajima, T., Piek, T., 1987. Two kinins isolated from an extract of the venom reservoirs of the solitary wasp Megascolia flavifrons. Toxicon 25, 527–535.PubMedCrossRefGoogle Scholar
  124. Yasuhara, T., Nakajima, T., Fukuda, K., Tsukamoto, Y., Mori, M., Kitada, C., Fujino, M., 1983. Structure and activity of chemotactic peptide from the venom sac of Vespinae, in: Munekata, E. (Ed.), Peptide Chemistry. Protein Research Foundation, Osaka, pp. 185–190.Google Scholar
  125. Yu, H., Yang, H., Ma, D., Lv, Y., Liu, T., Zhang, K., Lai, R., 2007. Vespid chemotactic peptide precursor from the wasp Vespa magnifica (Smith). Toxicon 50, 377–382.PubMedCrossRefGoogle Scholar
  126. Zhou, Z., Yang, H., Xu, X., Wang, X., Lai, R., 2006. The first report of kininogen from invertebrates. Biochem. Biophys. Res. Commun. 347, 1099–1102.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina

Personalised recommendations