The Biologic Activity of Aggretin/Rhodocytin, a Snake Venom C-Type Lectin Protein (Snaclec)

  • Ching-Hu Chung
  • Tur-Fu HuangEmail author


Aggretin (or rhodocytin), an ab-heterodimeric snake venom C-type lectin (snaclec), was originally found to activate platelets through specific binding to integrin α2β1, leading to activation of phospholipase C, platelet activation and subsequent thrombocytopenia in vivo. Recent reports suggest that the CLEC-2 receptor, involving the Src, Syk and PLCg pathway is critical for mediating platelet activation by aggretin. In this review, we discuss the use of aggretin to explore the role of α2β1 and/or CLEC-2 in different cell types, namely (i) induction of platelet aggregation (α2β1 or CLEC-2), (ii) induction of angiogenesis in endothelial cells (α2β1), (iii) promotion of proliferation, migration of smooth muscle cells and keratinocytes, and induction of cytokine release through CLEC-2 ligation, and also possible signal transduction pathways involving ligation of integrin α2β1 or CLEC-2.


Platelet Aggregation Snake Venom Snake Venom Toxin Washed Rabbit Platelet Mediate Platelet Aggregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We highly appreciate the long-term financial support from grants of National Science Council, Taiwan.


  1. Bergmeier, W., Bouvard, D., Eble, J.A., Mokhtari-Nejad, R., Schulte, V., Zirngibl, H., Brakebusch, C., Fassler, R., Nieswandt, B., 2001. Rhodocytin (aggretin) activates platelets lacking α2β1 integrin, glycoprotein VI, and the ligand-binding domain of glycoprotein Ibα. J. Biol. Chem. 276, 25121–25126.PubMedCrossRefGoogle Scholar
  2. Brakebusch, C., Grose, R., Quondamatteo, F., Ramirez, A., Jorcano, J.L., Pirro, A., Svensson, M., Herken, R., Sasaki, T., Timpl, R., Werner, S., Fassler, R., 2000. Skin and hair follicle integrity is crucially dependent on β1 integrin expression on keratinocytes. EMBO J. 19, 3990–4003.PubMedCrossRefGoogle Scholar
  3. Calvete, J.J., Moreno-Murciano, M.P., Theakston, R.D., Kisiel, D.G., Marcinkiewicz, C., 2003. Snake venom disintegrins: novel dimeric disintegrins and structural diversification by disulphide bond engineering. Biochem. J. 372, 725–734.PubMedCrossRefGoogle Scholar
  4. Chaipan, C., Soilleux, E.J., Simpson, P., Hofmann, H., Gramberg, T., Marzi, A., Geier, M., Stewart, E.A., Eisemann, J., Steinkasserer, A., Suzuki-Inoue, K., Fuller, G.L., Pearce, A.C., Watson, S.P., Hoxie, J.A., Baribaud, F., Pohlmann, S., 2006. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. J. Virol. 80, 8951–8960.PubMedCrossRefGoogle Scholar
  5. Chang, C.H., Chung, C.H., Hsu, C.C., Huang, T.Y., Huang, T.F., 2009. A novel mechanism of inflammatory response in macrophage induced by a snake venom C-type lectin protein, Aggretin. XXII International Society on Thrombosis and haemostasis, 2009 Poster, PP-MO-878.Google Scholar
  6. Chen, L.Y., Pan, W.W., Chen, M., Li, J.D., Liu, W., Chen, G., Huang, S., Papadimos, T.J., Pan, Z.K., 2009. Synergistic induction of inflammation by bacterial products lipopolysaccharide and fMLP: an important microbial pathogenic mechanism. J. Immunol. 182, 2518–2524.PubMedCrossRefGoogle Scholar
  7. Chung, C.H., Au, L.C., Huang, T.F., 1999. Molecular cloning and sequence analysis of aggretin, a collagen-like platelet aggregation inducer. Biochem. Biophys. Res. Commun. 263, 723–727.PubMedCrossRefGoogle Scholar
  8. Chung, C.H., Lin, K.T., Chang, C.H., Peng, H.C., Huang, T.F., 2009. The integrin α2β1 agonist, aggretin, promotes proliferation and migration of VSMC through NF-kB translocation and PDGF production. Br. J. Pharmacol. 156, 846–856.PubMedCrossRefGoogle Scholar
  9. Chung, C.H., Lin, K.T., Peng, H.C., Huang, T.F., 2007. The interaction of keratinocytes and fibroblasts with integrin α2β1 agonist, aggretin, and its regulation between epithelial/mesenchymal communications. XXI International Society on Thrombosis and Haemostasis, 2009 Poster.Google Scholar
  10. Chung, C.H., Peng, H.C., Huang, T.F., 2001. Aggretin, a C-type lectin protein, induces platelet aggregation via integrin α2β1 and GPIb in a phosphatidylinositol 3-kinase independent pathway. Biochem. Biophys. Res. Commun. 285, 689–695.PubMedCrossRefGoogle Scholar
  11. Chung, C.H., Wu, W.B., Huang, T.F., 2004. Aggretin, a snake venom-derived endothelial integrin α2β1 agonist, induces angiogenesis via expression of vascular endothelial growth factor. Blood 103, 2105–2113.PubMedCrossRefGoogle Scholar
  12. Clemetson, K.J., Lu, Q., Clemetson, J.M., 2005. Snake C-type lectin-like proteins and platelet receptors. Pathophysiol. Haemost. Thromb. 34, 150–155.PubMedCrossRefGoogle Scholar
  13. Clemetson, K.J., Morita, T., Kini, R.M., 2009. Classification and nomenclature of snake venom C-type lectins and related proteins. Toxicon 54, 83.PubMedCrossRefGoogle Scholar
  14. Cohen, J., 2002. The immunopathogenesis of sepsis. Nature 420, 885–891.PubMedCrossRefGoogle Scholar
  15. Colonna, M., Samaridis, J., Angman, L., 2000. Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur. J. Immunol. 30, 697–704.PubMedCrossRefGoogle Scholar
  16. Davis, G.E., Camarillo, C.W., 1996. An α2β1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp. Cell Res. 224, 39–51.PubMedCrossRefGoogle Scholar
  17. Eble, J.A., Beermann, B., Hinz, H.J., Schmidt-Hederich, A., 2001. α2β1 integrin is not recognized by rhodocytin but is the specific, high affinity target of rhodocetin, an RGD-independent disintegrin and potent inhibitor of cell adhesion to collagen. J. Biol. Chem. 276, 12274–12284.PubMedCrossRefGoogle Scholar
  18. Fuller, G.L., Williams, J.A., Tomlinson, M.G., Eble, J.A., Hanna, S.L., Pohlmann, S., Suzuki-Inoue, K., Ozaki, Y., Watson, S.P., Pearce, A.C., 2007. The C-type lectin receptors CLEC-2 and Dectin-1, but not DC-SIGN, signal via a novel YXXL-dependent signaling cascade. J. Biol. Chem. 282, 12397–12409.PubMedCrossRefGoogle Scholar
  19. Gamble, J.R., Matthias, L.J., Meyer, G., Kaur, P., Russ, G., Faull, R., Berndt, M.C., Vadas, M.A., 1993. Regulation of in vitro capillary tube formation by anti-integrin antibodies. J. Cell. Biol. 121, 931–943.PubMedCrossRefGoogle Scholar
  20. Gould, R.J., Polokoff, M.A., Friedman, P.A., Huang, T.F., Holt, J.C., Cook, J.J., Niewiarowski, S., 1990. Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proc. Soc. Exp. Biol. Med. 195, 168–171.PubMedGoogle Scholar
  21. Grose, R., Hutter, C., Bloch, W., Thorey, I., Watt, F.M., Fassler, R., Brakebusch, C., Werner, S., 2002. A crucial role of beta 1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development 129, 2303–2315.PubMedGoogle Scholar
  22. Herr, A.B., Farndale, R.W., 2009. Structural insights into the interactions between platelet receptors and fibrillar collagen. J. Biol. Chem. 284, 19781–19785.PubMedCrossRefGoogle Scholar
  23. Hirabayashi, J., Kusunoki, T., Kasai, K., 1991. Complete primary structure of a galactose-specific lectin from the venom of the rattlesnake Crotalus atrox. Homologies with Ca2+-dependent-type lectins. J. Biol. Chem. 266, 2320–2326.PubMedGoogle Scholar
  24. Holtkotter, O., Nieswandt, B., Smyth, N., Muller, W., Hafner, M., Schulte, V., Krieg, T., Eckes, B., 2002. Integrin α2-deficient mice develop normally, are fertile, but display partially defective platelet interaction with collagen. J. Biol. Chem. 277, 10789–10794.PubMedCrossRefGoogle Scholar
  25. Hooley, E., Papagrigoriou, E., Navdaev, A., Pandey, A.V., Clemetson, J.M., Clemetson, K.J., Emsley, J., 2008. The crystal structure of the platelet activator aggretin reveals a novel (αβ)2 dimeric structure. Biochemistry 47, 7831–7837.PubMedCrossRefGoogle Scholar
  26. Huang, T.F., Holt, J.C., Lukasiewicz, H., Niewiarowski, S., 1987. Trigramin. A low molecular weight peptide inhibiting fibrinogen interaction with platelet receptors expressed on glycoprotein IIb-IIIa complex. J. Biol. Chem. 262, 16157–16163.PubMedGoogle Scholar
  27. Huang, T.F., Liu, C.Z., Yang, S.H., 1995. Aggretin, a novel platelet-aggregation inducer from snake (Calloselasma rhodostoma) venom, activates phospholipase C by acting as a glycoprotein Ia/IIa agonist. Biochem. J. 309, 1021–1027.PubMedGoogle Scholar
  28. Ivaska, J., Reunanen, H., Westermarck, J., Koivisto, L., Kahari, V.M., Heino, J., 1999. Integrin α2β1 mediates isoform-specific activation of p38 and upregulation of collagen gene transcription by a mechanism involving the α2 cytoplasmic tail. J. Cell Biol. 147, 401–416.PubMedCrossRefGoogle Scholar
  29. Jarvis, G.E., Atkinson, B.T., Snell, D.C., Watson, S.P., 2002. Distinct roles of GPVI and integrin α2β1 in platelet shape change and aggregation induced by different collagens. Br. J. Pharmacol. 137, 107–117.PubMedCrossRefGoogle Scholar
  30. Kato, Y., Fujita, N., Kunita, A., Sato, S., Kaneko, M., Osawa, M., Tsuruo, T., 2003. Molecular identification of Aggrus/T1α as a platelet aggregation-inducing factor expressed in colorectal tumors. J. Biol. Chem. 278, 51599–51605.PubMedCrossRefGoogle Scholar
  31. Kerrigan, A.M., Dennehy, K.M., Mourao-Sa, D., Faro-Trindade, I., Willment, J.A., Taylor, P.R., Eble, J.A., Reis e Sousa, C., Brown, G.D., 2009. CLEC-2 is a phagocytic activation receptor expressed on murine peripheral blood neutrophils. J. Immunol. 182, 4150–4157.PubMedCrossRefGoogle Scholar
  32. Kowalska, M.A., Tan, L., Holt, J.C., Peng, M., Karczewski, J., Calvete, J.J., Niewiarowski, S., 1998. Alboaggregins A and B. Structure and interaction with human platelets. Thromb. Haemost. 79, 609–613.PubMedGoogle Scholar
  33. Lankhof, H., van Hoeij, M., Schiphorst, M.E., Bracke, M., Wu, Y.P., Ijsseldijk, M.J., Vink, T., de Groot, P.G., Sixma, J.J., 1996. A3 domain is essential for interaction of von Willebrand factor with collagen type III. Thromb. Haemost. 75, 950–958.PubMedGoogle Scholar
  34. Leduc, M., Bon, C., 1998. Cloning of subunits of convulxin, a collagen-like platelet-aggregating protein from Crotalus durissus terrificus venom. Biochem. J. 333, 389–393.PubMedGoogle Scholar
  35. Li, T.T., Larrucea, S., Souza, S., Leal, S.M., Lopez, J.A., Rubin, E.M., Nieswandt, B., Bray, P.F., 2004. Genetic variation responsible for mouse strain differences in integrin α2 expression is associated with altered platelet responses to collagen. Blood 103, 3396–3402.PubMedCrossRefGoogle Scholar
  36. May, F., Hagedorn, I., Pleines, I., Bender, M., Vogtle, T., Eble, J., Elvers, M., Nieswandt, B., 2009. CLEC-2 is an essential platelet activating receptor in hemostasis and thrombosis. Blood 114, 3464–3472.PubMedCrossRefGoogle Scholar
  37. Mizuno, H., Fujimoto, Z., Koizumi, M., Kano, H., Atoda, H., Morita, T., 1997. Structure of coagulation factors IX/X-binding protein, a heterodimer of C-type lectin domains. Nat. Struc. Biol. 4, 438–441.CrossRefGoogle Scholar
  38. Morita, T., 2005. Structures and functions of snake venom CLPs (C-type lectin-like proteins) with anticoagulant-, procoagulant-, and platelet-modulating activities. Toxicon 45, 1099–1114.PubMedCrossRefGoogle Scholar
  39. Moroi, M., Jung, S.M., Nomura, S., Sekiguchi, S., Ordinas, A., Diaz-Ricart, M., 1997. Analysis of the involvement of the von Willebrand factor-glycoprotein Ib interaction in platelet adhesion to a collagen-coated surface under flow conditions. Blood 90, 4413–4424.PubMedGoogle Scholar
  40. Nathan, C., 2002. Points of control in inflammation. Nature 420, 846–852.PubMedCrossRefGoogle Scholar
  41. Navdaev, A., Clemetson, J.M., Polgar, J., Kehrel, B.E., Glauner, M., Magnenat, E., Wells, T.N., Clemetson, K.J., 2001. Aggretin, a heterodimeric C-type lectin from Calloselasma rhodostoma (Malayan pit viper), stimulates platelets by binding to α2β1 integrin and glycoprotein Ib, activating Syk and phospholipase Cγ2, but does not involve the glycoprotein VI/Fc receptor γ chain collagen receptor. J. Biol. Chem. 276, 20882–20889.PubMedCrossRefGoogle Scholar
  42. Nieswandt, B., Brakebusch, C., Bergmeier, W., Schulte, V., Bouvard, D., Mokhtari-Nejad, R., Lindhout, T., Heemskerk, J.W., Zirngibl, H., Fassler, R., 2001. Glycoprotein VI but not α2β1 integrin is essential for platelet interaction with collagen. EMBO J. 20, 2120–2130.PubMedCrossRefGoogle Scholar
  43. Ouyang, C., Teng, C.M., Huang, T.F., 1992. Characterization of snake venom components acting on blood coagulation and platelet function. Toxicon 30, 945–966.PubMedCrossRefGoogle Scholar
  44. Ouyang, C.H., Yeh, H.I., Huang, T.F., 1986. Purification and characterization of a platelet aggregation inducer from Calloselasma rhodostoma (Malayan pit viper) snake venom. Toxicon 24, 633–643.PubMedCrossRefGoogle Scholar
  45. Ozaki, Y., Suzuki-Inoue, K., Inoue, O., 2009. Novel interactions in platelet biology: CLEC-2/podoplanin and laminin/GPVI. J Thromb. Haemost. 7(Suppl 1), 191–194.PubMedCrossRefGoogle Scholar
  46. Rankin, J.A., 2004. Biological mediators of acute inflammation. AACN Clin. Issues 15, 3–17.PubMedCrossRefGoogle Scholar
  47. Ravanti, L., Heino, J., Lopez-Otin, C., Kahari, V.M., 1999. Induction of collagenase-3 (MMP-13) expression in human skin fibroblasts by three-dimensional collagen is mediated by p38 mitogen-activated protein kinase. J. Biol. Chem. 274, 2446–2455.PubMedCrossRefGoogle Scholar
  48. Reid, H.A., Thean, P.C., Chan, K.E., Baharom, A.R., 1963. Clinical effects of bites by Malayan viper (Ancistrodon rhodostoma). Lancet 1, 617–621.PubMedCrossRefGoogle Scholar
  49. Saelman, E.U., Keely, P.J., Santoro, S.A., 1995. Loss of MDCK cell α2β1 integrin expression results in reduced cyst formation, failure of hepatocyte growth factor/scatter factor-induced branching morphogenesis, and increased apoptosis. J. Cell Sci. 108, 3531–3540.PubMedGoogle Scholar
  50. Savage, B., Almus-Jacobs, F., Ruggeri, Z.M., 1998. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 94, 657–666.PubMedCrossRefGoogle Scholar
  51. Shin, Y., Morita, T., 1998. Rhodocytin, a functional novel platelet agonist belonging to the heterodimeric C-type lectin family, induces platelet aggregation independently of glycoprotein Ib. Biochem. Biophys. Res. Commun. 245, 741–745.PubMedCrossRefGoogle Scholar
  52. Suzuki-Inoue, K., Fuller, G.L., Garcia, A., Eble, J.A., Pohlmann, S., Inoue, O., Gartner, T.K., Hughan, S.C., Pearce, A.C., Laing, G.D., Theakston, R.D., Schweighoffer, E., Zitzmann, N., Morita, T., Tybulewicz, V.L., Ozaki, Y., Watson, S.P., 2006. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 107, 542–549.PubMedCrossRefGoogle Scholar
  53. Suzuki-Inoue, K., Kato, Y., Inoue, O., Kaneko, M.K., Mishima, K., Yatomi, Y., Yamazaki, Y., Narimatsu, H., Ozaki, Y., 2007. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J. Biol. Chem. 282, 25993–26001.PubMedCrossRefGoogle Scholar
  54. Suzuki-Inoue, K., Ozaki, Y., Kainoh, M., Shin, Y., Wu, Y., Yatomi, Y., Ohmori, T., Tanaka, T., Satoh, K., Morita, T., 2001. Rhodocytin induces platelet aggregation by interacting with glycoprotein Ia/IIa (GPIa/IIa, Integrin α2β1). Involvement of GPIa/IIa-associated src and protein tyrosine phosphorylation. J. Biol. Chem. 276, 1643–1652.PubMedCrossRefGoogle Scholar
  55. Teng, C.M., Huang, T.F., 1991. Inventory of exogenous inhibitors of platelet aggregation. For the Subcommittee on Nomenclature of Exogenous Hemostatic Factors of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb. Haemost. 65, 624–626.PubMedGoogle Scholar
  56. Teng, C.M., Hung, M.L., Huang, T.F., Ouyang, C., 1989. Triwaglerin: a potent platelet aggregation inducer purified from Trimeresurus wagleri snake venom. Biochim. Biophys. Acta 992, 258–264.PubMedCrossRefGoogle Scholar
  57. Wang, W.J., Huang, T.F., 2001. A novel tetrameric venom protein, agglucetin from Agkistrodon acutus, acts as a glycoprotein Ib agonist. Thromb. Haemost. 86, 1077–1086.PubMedGoogle Scholar
  58. Xiang, D., Huang, D., Gai, L., Liu, H., 2000. Relationship between expression of type III collagen and phenotype of vascular smooth muscle cells in neointimal of stented coronary artery. Chin. Med. J. (Engl) 113, 324–327.Google Scholar
  59. Yeh, C.H., Wang, W.C., Hsieh, T.T., Huang, T.F., 2000. Agkistin, a snake venom-derived glycoprotein Ib antagonist, disrupts von Willebrand factor-endothelial cell interaction and inhibits angiogenesis. J. Biol. Chem. 275, 18615–18618.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute of Pharmacology and Toxicology, Tzu Chi UniversityHualienTaiwan
  2. 2.Institute of Pharmacology, College of MedicineNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations