Snake Venom Prothrombin Activators – The History

  • Jan RosingEmail author
  • Guido Tans


Snake venom prothrombin activators have been shown to be excellent tools in diagnostic coagulation assays and in studying the mechanism of prothrombin activation. In this review we give an historical overview of the discovery of snake venom prothrombin activators and of their mechanisms of action on prothrombin. Based on the effects of the accessory components of the human prothrombin-activating complex (calcium ions, phospholipids and factor Va), venom prothrombin activators can be divided into four groups comprising activators that are metalloproteinases which either do not require accessory components (group A) or which require calcium ions for expressing activity (group B). The other activators are serine proteases that share homology with blood coagulation factor Xa and which require phospholipids plus calcium ions for optimal activity (Group C) or the activity of which is greatly enhanced by calcium ions, phospholipids and factor Va (group D).


Factor Versus Snake Venom Prothrombin Activation Blood Coagulation Factor Amidolytic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bergstrom, K., Egberg, N., 1978. Determination of vitamin K sensitive coagulation factors in plasma: studies on three methods using synthetic chromogenic substrates. Thromb. Res. 12, 531–547.CrossRefPubMedGoogle Scholar
  2. Bos, M.H., Boltz, M., St. Pierre, L., Masci, P.P., de Jersey, J., Lavin, M.F., Camire, R.M., 2009. Venom factor V from the common brown snake escapes hemostatic regulation through procoagulant adaptations. Blood 114, 686–692.CrossRefPubMedGoogle Scholar
  3. Bradlow, B.A., Atkinson, P.M., Gomperts, E.D., Gaillard, M.C., 1980. Studies on the coagulant effects of boomslang (Dispholidus typus) venom. Clin. Lab. Haemat. 2, 317–331.Google Scholar
  4. Briet, E., Noyens, C.M., Roberts, H.R., Griffith, M.J., 1982. Cleavage and activation of human prothrombin by Echis carinatus venom. Thromb. Res. 27, 591–600.CrossRefPubMedGoogle Scholar
  5. Davie, E.W., Fujikawa, K., Kisiel, W., 1991. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 30, 10363–10370.CrossRefPubMedGoogle Scholar
  6. Denson, K.W., 1969. Coagulant and anticoagulant action of snake venoms. Toxicon 7, 5–11.CrossRefPubMedGoogle Scholar
  7. Denson, K.W., 1976. Clot-inducing substances present in snake venoms with particular reference to Echis carinatus. Thromb. Res. 8, 351–360.CrossRefPubMedGoogle Scholar
  8. Denson, K.W., Borrett, R., Biggs, R., 1971. The specific Assay of prothrombin using the Taipan snake venom. Br. J. Haematol. 21, 219–226.CrossRefPubMedGoogle Scholar
  9. Doyle, M.F., Mann, K.G., 1990. Multiple active forms of thrombin. IV. Relative activities of meizothrombins. J. Biol. Chem. 265, 10693–10701.PubMedGoogle Scholar
  10. Eagle, H., 1937. The coagulation of blood by snake venoms and its physiologic significance. J. Exp. Med. 65, 613–639.CrossRefPubMedGoogle Scholar
  11. Esmon, C.T., Jackson, C.M., 1974a. The conversion of prothrombin to thrombin III The factor Xa catalyzed activation of prothrombin. J. Biol. Chem. 249, 7782–7790.PubMedGoogle Scholar
  12. Esmon, C.T., Jackson, C.M. 1974b. Conversion of prothrombin to thrombin. IV. The function of the fragment 2 region during activation in the presence of factor V. J. Biol. Chem. 249, 7791–7797.PubMedGoogle Scholar
  13. Esmon, C.T., Owen, W.G., Jackson, C.M. 1974a. The conversion of prothrombin to thrombin II differentiation between thrombin- and factor Xa-catalyzed proteolysis. J. Biol. Chem. 249, 606–611.PubMedGoogle Scholar
  14. Esmon, C.T., Owen, W.G., Jackson, C.M., 1974b. The conversion of prothrombin to thrombin V The activation of prothrombin by factor Xa in the presence of phospholipid. J. Biol. Chem. 249, 7798–7807.PubMedGoogle Scholar
  15. Esmon, C.T., Owen, W.G., Jackson, C.M., 1974c. A plausible mechanism for prothrombin activation by factor Xa, factor Va, phospholipid and calcium ions. J. Biol. Chem. 249, 8045–8047.PubMedGoogle Scholar
  16. Filippovich, I., Sorokina, N., St. Pierre, L., Flight, S., de Jersey, J., Perry, N., Masci, P.P., Lavin, M.F., 2005. Cloning and functional expression of venom prothrombin activator protease from Pseudonaja textilis with whole blood procoagulant activity. Br. J. Haematol. 131, 237–246.CrossRefPubMedGoogle Scholar
  17. Franza, B.R., Jr., Aronson, D.L., Finlayson, J.S., 1975. Activation of human prothrombin by a procoagulant fraction from the venom of Echis carinatus. Identification of a high molecular weight intermediate with thrombin activity. J. Biol. Chem. 250, 7057–7068.PubMedGoogle Scholar
  18. Govers-Riemslag, J.W., Johnsen, L., Petrovan, R.J., Rosing, J., Tans, G., 1998. A kinetic assay to determine prothrombin binding to membranes. Thromb. Res. 92, 239–247.CrossRefPubMedGoogle Scholar
  19. Govers-Riemslag, J.W., Knapen, M.J., Tans, G., Zwaal, R.F., Rosing, J., 1987. Structural and functional characterization of a prothrombin activator from the venom of Bothrops neuwiedi. Biochim. Biophys. Acta 916, 388–401.CrossRefPubMedGoogle Scholar
  20. Gowda, D.C., Jackson, C.M., Hensley, P., Davidson, E.A., 1994. Factor X-activating glycoprotein of Russell’s viper venom. J. Biol. Chem. 269, 10644–10650.PubMedGoogle Scholar
  21. Guillin, M.C., Bezeaud, A., Menache, D., 1978. The mechanism of activation of human prothrombin by an activator isolated from dispholidus types venom. Biochim. Biophys. Acta 537, 160–168.CrossRefPubMedGoogle Scholar
  22. Hackeng, T.M., Tans, G., Koppelman, S.J., de Groot, P.G., Rosing, J., Bouma, B.N., 1996. Protein C activation on endothelial cells by prothrombin activation products generated in situ: meizothrombin is a better protein C activator than α-thrombin. Biochem. J. 319, 399–405.PubMedGoogle Scholar
  23. Hjort, P., Rapaport, S.I., Owren, P.A., 1955. A simple, specific one-stage prothrombin assay using Russell’s viper venom in cephalin suspension. J. Lab. Clin. Med. 46, 89–97.PubMedGoogle Scholar
  24. Hofmann, H., Bon, C., 1987a. Blood coagulation induced by the venom of Bothrops atrox. 1. Identification, purification, and properties of a prothrombin activator. Biochemistry 26, 772–780.CrossRefPubMedGoogle Scholar
  25. Hofmann, H., Bon, C., 1987b. Blood coagulation induced by the venom of Bothrops atrox. 2. Identification, purification, and properties of two factor X activators. Biochemistry 26, 780–787.CrossRefPubMedGoogle Scholar
  26. Jobin, F., Esnouf, M.P., 1966. Coagulant activity of tiger snake (Notechis scutatus scutatus) venom. Nature 211, 873–875.CrossRefPubMedGoogle Scholar
  27. Joseph, J.S., Chung, M.C., Jeyaseelan, K., Kini, R.M., 1999. Amino acid sequence of trocarin, a prothrombin activator from Tropidechis carinatus venom: its structural similarity to coagulation factor Xa. Blood 94, 621–631.PubMedGoogle Scholar
  28. Kini, R.M., 2005. The intriguing world of prothrombin activators from snake venom. Toxicon 45, 1133–1145.CrossRefPubMedGoogle Scholar
  29. Kini, R.M., Rao, V.S., Joseph, J.S., 2001. Procoagulant proteins from snake venoms. Haemostasis 31, 218–224.PubMedGoogle Scholar
  30. Kirchhof, B.R., Vermeer, C., Hemker, H.C., 1978. The determination of prothrombin using synthetic chromogenic substrates; choice of a suitable activator. Thromb. Res. 13, 219–232.CrossRefPubMedGoogle Scholar
  31. Kornalik, F., Blomback, B., 1975. Prothrombin activation induced by Ecarin – a prothrombin converting enzyme from Echis carinatus venom. Thromb. Res. 6, 57–63.CrossRefPubMedGoogle Scholar
  32. Kornalik, F., Schieck, A., Habermann, E., 1969. Isolation, biochemical and pharmacologic characterization of a prothrombin-activating principle from Echis carinatus venom. Naunyn Schmiedebergs Arch. Pharmakol. 264, 259–260.CrossRefPubMedGoogle Scholar
  33. Krishnaswamy, S., Church, W.R., Nesheim, M.E., Mann, K.G., 1987. Activation of human prothrombin by human prothrombinase. Influence of factor Va on the reaction mechanism. J. Biol. Chem. 262, 3291–3299.PubMedGoogle Scholar
  34. Krishnaswamy, S., Mann, K.G., Nesheim, M.E., 1986. The prothrombinase-catalyzed activation of prothrombin proceeds through the intermediate meizothrombin in an ordered, sequential reaction. J. Biol. Chem. 261, 8977–8984.PubMedGoogle Scholar
  35. Lanchantin, G.F., Friedmann, J.A., Hart, D.W., 1973. Two forms of human thrombin. Isolation and characterization. J. Biol. Chem. 248, 5956–5966.PubMedGoogle Scholar
  36. Lavin, M.F., Masci, P.P., 2009. Prothrombinase complexes with different physiological roles. Thromb. Haemost. 102, 421–423.PubMedGoogle Scholar
  37. Macfarlane, R.G., 1948. Normal and abnormal blood coagulation: a review. J. Clin. Pathol. 1, 113–143.CrossRefPubMedGoogle Scholar
  38. Marsh, N., Williams, V., 2005. Practical applications of snake venom toxins in haemostasis. Toxicon 45, 1171–1181.CrossRefPubMedGoogle Scholar
  39. Martin, C.J., 1893. On some effects upon the blood produced by the injection of the venom of the Australian black snake (Pseudechis porphyriacus). J. Physiol. 15, 380–400.PubMedGoogle Scholar
  40. Masci, P.P., Whitaker, A.N., de Jersey, J., 1988. Purification and characterization of a prothrombin activator from the venom of the Australian brown snake, Pseudonaja textilis textilis. Biochem. Int. 17, 825–835.PubMedGoogle Scholar
  41. Mellanby, J., 1909. The coagulation of blood: Part II. The actions of snake venoms, peptone and leech extract. J. Physiol. 38, 441–503.PubMedGoogle Scholar
  42. Minh Le, T.N., Reza, M.A., Swarup, S., Kini, R.M., 2005. Gene duplication of coagulation factor V and origin of venom prothrombin activator in Pseudonaja textilis snake. Thromb. Haemost. 93, 420–429.Google Scholar
  43. Morita, T., 1998. Proteases which activate factor X. in: Bailey, G. (Ed.), Enzymes from Snake Venoms. Alaken Inc., Fort Collins, CO, pp. 179–209.Google Scholar
  44. Morita, T., Iwanaga, S., 1978. Purification and properties of prothrombin activator from the venom of echis carinatus. J. Biochem. 83, 559–570.PubMedGoogle Scholar
  45. Morita, T., Iwanaga, S., Suzuki, T., 1976. The mechanism of activation of bovine prothrombin by an activator isolated from Echis carinatus venon and characterization of the new active intermediates. J. Biochem. 79, 1089–1108.PubMedGoogle Scholar
  46. Nishida, S., Fujita, T., Kohno, N., Atoda, H., Morita, T., Takeya, H., Kido, I., Paine, M.J., Kawabata, S., Iwanaga, S., 1995. cDNA cloning and deduced amino acid sequence of prothrombin activator (ecarin) from Kenyan Echis carinatus venom. Biochemistry 34, 1771–1778.CrossRefPubMedGoogle Scholar
  47. Novoa, E., Seegers, W.H., 1980. Mechanisms of α-thrombin and β-thrombin-E formation: use of ecarin for isolation of meizothrombin 1. Thromb. Res. 18, 657–668.CrossRefPubMedGoogle Scholar
  48. Owen, W.G., Jackson, C.M., 1973. Activation of prothrombin with Oxyuranus scutellatus scutellatus (Taipan snake) venom. Thromb. Res. 3, 705–714.CrossRefGoogle Scholar
  49. Petrovan, R.J., Govers-Riemslag, J.W., Nowak, G., Hemker, H.C., Rosing, J., Tans, G., 1997. Purification and characterization of multisquamase, the prothrombin activator present in Echis multisquamatus venom. Thromb. Res. 88, 309–316.CrossRefPubMedGoogle Scholar
  50. Petrovan, R.J., Govers-Riemslag, J.W., Nowak, G., Hemker, H.C., Tans, G., Rosing, J., 1998. Autocatalytic peptide bond cleavages in prothrombin and meizothrombin. Biochemistry 37, 1185–1191.CrossRefPubMedGoogle Scholar
  51. Petrovan, R.J., Rapaport, S.I., Le, D.T., 1999. A novel clotting assay for quantitation of plasma prothrombin (factor II) using Echis multisquamatus venom. Am. J. Clin. Pathol. 112, 705–711.PubMedGoogle Scholar
  52. St. Pierre, L., Masci, P.P., Filippovich, I., Sorokina, N., Marsh, N., Miller, D.J., Lavin, M.F., 2005. Comparative analysis of prothrombin activators from the venom of Australian elapids. Mol. Biol. Evol. 22, 1853–1864.CrossRefGoogle Scholar
  53. Pirkle, H., McIntosh, M., Theodor, I., Vernon, S., 1972. Activation of prothrombin with taipan snake venom. Thromb. Res. 1, 559–568.CrossRefGoogle Scholar
  54. Platonova, T.N., Sushko, E.A., Petrov, A.V., Solov’ev, D.A., 1995. Determination of the general prothrombin level and detection of its functionally inactive forms using the enzyme ecamulin purified from Echis multisquamatus venom. Ukr. Biokhim. Zh. 67, 75–80.PubMedGoogle Scholar
  55. Rabiet, M.J., Blashill, A., Furie, B., Furie, B.C., 1986. Prothrombin fragment 1 X 2 X 3, a major product of prothrombin activation in human plasma. J. Biol. Chem. 261, 13210–13215.PubMedGoogle Scholar
  56. Rao, V.S., Joseph, J.S., Kini, R.M., 2003a. Group D prothrombin activators from snake venom are structural homologues of mammalian blood coagulation factor Xa. Biochem. J. 369, 635–642.CrossRefPubMedGoogle Scholar
  57. Rao, V.S., Kini, R.M., 2002. Pseutarin C, a prothrombin activator from Pseudonaja textilis venom: its structural and functional similarity to mammalian coagulation factor Xa-Va complex. Thromb. Haemost. 88, 611–619.PubMedGoogle Scholar
  58. Rao, V.S., Swarup, S., Kini, R.M., 2003b. The nonenzymatic subunit of pseutarin C, a prothrombin activator from eastern brown snake (Pseudonaja textilis) venom, shows structural similarity to mammalian coagulation factor V. Blood 102, 1347–1354.CrossRefPubMedGoogle Scholar
  59. Rao, V.S., Swarup, S., Kini, R.M., 2004. The catalytic subunit of pseutarin C, a group C prothrombin activator from the venom of Pseudonaja textilis, is structurally similar to mammalian blood coagulation factor Xa. Thromb. Haemost. 92, 509–521.PubMedGoogle Scholar
  60. Reza, A., Swarup, S., Kini, R.M., 2005. Two parallel prothrombin activator systems in Australian rough-scaled snake, Tropidechis carinatus. Structural comparison of venom prothrombin activator with blood coagulation factor X. Thromb. Haemost. 93, 40–47.PubMedGoogle Scholar
  61. Reza, M.A., Minh Le, T.N., Swarup, S., Kini, R.M., 2006. Molecular evolution caught in action: gene duplication and evolution of molecular isoforms of prothrombin activators in Pseudonaja textilis (brown snake). J. Thromb. Haemost. 4, 1346–1353.CrossRefPubMedGoogle Scholar
  62. Rhee, M.J., Morris, S., Kosow, D.P., 1982. Role of meizothrombin and meizothrombin-(des F1) in the conversion of prothrombin to thrombin by the echis carinatus venom coagulant. Biochemistry 21, 3437–3443.CrossRefPubMedGoogle Scholar
  63. Rosing, J., Tans, G., 1988. Meizothrombin, a major product of factor Xa-catalyzed prothrombin activation. Thromb. Haemost. 60, 355–360.PubMedGoogle Scholar
  64. Rosing, J., Tans, G., 1992. Structural and functional properties of snake venom prothrombin activators. Toxicon 30, 1515–1527.CrossRefPubMedGoogle Scholar
  65. Rosing, J., Tans, G., Govers-Riemslag, J.W., Zwaal, R.F., Hemker, H.C., 1980. The role of phospholipids and factor Va in the prothrombinase complex. J. Biol. Chem. 255, 274–283.PubMedGoogle Scholar
  66. Rosing, J., Zwaal, R.F., Tans, G., 1986. Formation of meizothrombin as intermediate in factor Xa-catalyzed prothrombin activation. J. Biol. Chem. 261, 4224–4228.PubMedGoogle Scholar
  67. Schieck, A., Habermann, E., Kornalik, F., 1972. The prothrombin-activating principle from Echis carinatus venom. II. Coagulation studies in vitro and in vivo. Naunyn Schmiedebergs Arch. Pharmacol. 274, 7–17.CrossRefPubMedGoogle Scholar
  68. Seegers, W.H., Teng, C.M., Ghosh, A., Novoa, E., 1981. Three aspects of prothrombin activation related to protein M, ecarin, acutin, meizothrombin 1 and prethrombin 2. Ann. N. Y. Acad. Sci. 370, 453–467.CrossRefPubMedGoogle Scholar
  69. Solovjev, D.A., Platonova, T.N., Ugarova, T.P. 1996. Isolation and characteristics of ekamulin – a prothrombin activator from multiscaled viper (Echis multisquamatus) venom. Biokhimiia 61, 1094–1105.PubMedGoogle Scholar
  70. Solovjev, D.A., Platonova, T.N., Ugarova, T.P., 1996. Purification and characterization of ecamulin – a prothrombin activator from the venom of multi-scaled viper (Echis multisquamatus). Ukr. Biokhim. Zh. 68, 18–19.PubMedGoogle Scholar
  71. Speijer, H., Govers-Riemslag, J.W., Zwaal, R.F., Rosing, J., 1986. Prothrombin activation by an activator from the venom of Oxyuranus scutellatus (Taipan snake). J. Biol. Chem. 261, 13258–13267.PubMedGoogle Scholar
  72. Tans, G., Govers-Riemslag, J.W., van Rijn, J.L., Rosing, J., 1985. Purification and properties of a prothrombin activator from the venom of Notechis scutatus scutatus. J. Biol. Chem. 260, 9366–9372.PubMedGoogle Scholar
  73. Tans, G., Janssen-Claessen, T., Hemker, H.C., Zwaal, R.F., Rosing, J., 1991. Meizothrombin formation during factor Xa-catalyzed prothrombin activation. Formation in a purified system and in plasma. J. Biol. Chem. 266, 21864–21873.PubMedGoogle Scholar
  74. Tans, G., Nicolaes, G.A., Thomassen, M.C., Hemker, H.C., van Zonneveld, A.J., Pannekoek, H., Rosing, J., 1994. Activation of human factor V by meizothrombin. J. Biol. Chem. 269, 15969–15972.PubMedGoogle Scholar
  75. van Rijn, J.L., Govers-Riemslag, J.W., Zwaal, R.F., Rosing, J., 1984. Kinetic studies of prothrombin activation: effect of factor Va and phospholipids on the formation of the enzyme-substrate complex. Biochemistry 23, 4557–4564.CrossRefPubMedGoogle Scholar
  76. Walker, F.J., Owen, W.G., Esmon, C.T., 1980. Characterization of the prothrombin activator from the venom of Oxyuranus scutellatus scutellatus (Taipan venom). Biochemistry 19, 1020–1023.CrossRefPubMedGoogle Scholar
  77. Welton, R.E., Burnell, J.N., 2005. Full length nucleotide sequence of a factor V-like subunit of oscutarin from Oxyuranus scutellatus scutellatus (coastal Taipan). Toxicon 46, 328–336.CrossRefPubMedGoogle Scholar
  78. Yamada, D., Morita, T., 1997. Purification and characterization of a Ca2+-dependent prothrombin activator, multactivase, from the venom of Echis multisquamatus. J. Biochem. 122, 991–997.CrossRefPubMedGoogle Scholar
  79. Yamada, D., Morita, T., 1999. CA-1 method, a novel assay for quantification of normal prothrombin using a Ca2+-dependent prothrombin activator, carinactivase-1. Thromb. Res. 94, 221–226.CrossRefPubMedGoogle Scholar
  80. Yamada, D., Sekiya, F., Morita, T., 1996. Isolation and characterization of carinactivase, a novel prothrombin activator in Echis carinatus venom with a unique catalytic mechanism. J. Biol. Chem. 271, 5200–5207.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM), Maastricht UniversityMaastrichtThe Netherlands

Personalised recommendations